Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2021年12月9日 星期四

103年高考三級-工程數學詳解

103年公務人員高等考試三級考試

類 科:電力工程、電子工程、電信工程、醫學工程
科 目:工程數學
甲、申論題部分:( 50 分)

解答y6y+9t0y(τ)dτ=4t3e3tL{y}6L{y}+9L{t0y(τ)dτ}=4L{t3e3t}sY(s)y(0)6Y(s)+9Y(s)s=43!(s3)4(s6+9s)Y(s)=24(s3)4(s3)2sY(s)=24(s3)4Y(s)=24s(s3)6=24(s3)5+72(s3)6y(t)=L1{4!(s3)5}+35L1{5!(s3)6}=t4e3t+35t5e3ty(t)=t4e3t+35t5e3t
解答A=[1a2a3an1000λ21+λ2a2λ2a3λ2an0100λ3λ3a21+λ3a3λ3an0010λnλna2λna31+λnan0001]1×(λk)k,k=2,,n[1a2a3an10000100λ21000010λ30100001λn001]k×(ak)1,k=2,,n[10001+nk=2λkaka2a3an0100λ21000010λ30100001λn001]A1=[1+nk=2λkaka2a3anλ2100λ3010λn001]
解答E:Ax+By+Cz=Dn=(A,B,C)nL:xA=yB=zCLPP(At,Bt,Ct),tRPEA2t+B2t+C2t=Dt=DA2+B2+C2P=(ADA2+B2+C2,BDA2+B2+C2,CDA2+B2+C2)
解答
(一)61656263(16)2(56)3C52C52(16)2(56)312(12)3(12)2C53C53(12)3(12)2C52(16)2(56)3×C53(12)3(12)2=552835(二)k6C5k(16)k(56)5k,k=0,..,565k=0[C5k(16)k(56)5k]2

乙、測驗題部分:(50 分)

解答{x(t)=ty(t)=tz(t)=t2{dx=dtdy=dtdz=2tdtCφds=20(t+t)x(t)2+y(t)2+z(t)2dt=202t2+4t2dt=18214udu(u=2+4t2du=8tdt)=16(183/223/2)=16(54222)=2632(D)
解答2(fg)=f2g+g2f+2fg(D)
解答cF(r)dt=π0[4sin2(t),t,4cos2(t)]dt=[2tsin(2t),12t2,2cos(2t)+2]|π0=[2π,12π2,2π](C)
解答{u=(1,1,1)v=(1,0,1)w=(0,1,0){u×(v×w)=u×(1,0,1)=(1,2,1)(u×v)×w=(1,0,1)×w=(1,0,1)u×(v×w)(u×v)×w(C)
解答A=[210120001]A1=[2/31/301/32/30001]det(A1)=4919=13(D)
解答(A)M(2,4,6)t=(8,16,24)t=4(2,4,6)t(2,4,6)(B)M(2,0,6)t=(4,16,12)tλ(2,0,6)(C)M(2,2,0)t=(4,4,0)t=2(2,2,0)t(D)M(1,0,1)t=(2,0,2)t=2(1,0,1)t(B)
解答(D)
解答ez=1+2i=5(15+25i)=5(cosθ+isinθ)=eln5+iθz=ln5+iθ,{cosθ=1/5sinθ=2/5tanθ=2θ=tan12z=12ln(5)+itan1(2)(B)
解答det(AλI)=|2λ11i1λi1+ii2λ|=λ34λ2+2=0{λ1+λ2+λ3=4λ1λ2+λ2λ3+λ3λ1=0λ1λ2λ3=2(D)
解答cn=(3n)!(n!)3cn+1cn=(3n+3)!((n+1)!)3(n!)3(3n)!=(3n+3)(3n+2)(3n+1)(n+1)3=3(3n+2)(3n+1)(n+1)2limn|cn+1cn|=limn3(3n+2)(3n+1)(n+1)2=27=127|z2i|<127(B)
解答Cze1/zdz=Cz(1+1z+12!z2+13!z3+)dz=C(z+1+12!z+13!z2+)dz=12C1zdz=12×2πi=πi(B)
解答(C)x5y
解答Y(s)={-s+2 \over s^2+6s+8}={2\over s+2}-{3\over s+4} \\\Rightarrow y(x)= \mathcal{L}^{-1}\{Y(s)\}= 2\mathcal{L}^{-1}\{ {1\over s+2}\}-3\mathcal{L}^{-1}\{ {1\over s+4}\} =2e^{-2x}-3e^{-4x} \\ \Rightarrow y(x)=2e^{-2x}-3e^{-4x} \Rightarrow \cases{y_0=  y(0)=2-3=-1\\ y'+ay= (2a-4)e^{-2x}+(-3a+12)e^{-4x}=4e^{-2x} \Rightarrow a=4}\\ \Rightarrow a+y_0=4-1=3,故選\bbox[red,2pt]{(B)}
解答\mathcal{L}[\cos(\omega t+\phi)]= \mathcal{L}[ \sin(\omega t+\phi+\pi/2) ] ={\omega\cos( \phi+\pi/2)+ s\sin(\phi+\pi/2)\over s^2+\omega^2}\\ ={-\omega\sin( \phi )+ s\cos(\phi )\over s^2+\omega^2},故選\bbox[red,2pt]{(D)}
解答y''+\lambda y=0 \Rightarrow 特徵方程式r^2+\lambda=0 \Rightarrow r= \pm \sqrt{-\lambda} \\ \text{Cases 1:}\lambda \lt 0 \Rightarrow y=c_1e^{\sqrt{-\lambda}x} +c_2e^{-\sqrt{-\lambda}x},將y(0)=y(L)=0代入\Rightarrow c_1=c_2=0\\\text{Cases 2:}\lambda = 0 \Rightarrow y''=0 \Rightarrow y=c_1x+c_2,將y(0)=y(L)=0代入\Rightarrow c_1=c_2=0\\\text{Cases 3:}\lambda = \sigma^2\gt  0\Rightarrow r=\pm \sigma i \Rightarrow y= c_1\cos (\sigma x) +c_2\sin(\sigma x)\\ \qquad\quad將y(0)=y(L)=0代入\Rightarrow \cases{c_1=0\\ c_2\sin(\sigma L)=0} \\ \qquad\quad \Rightarrow \sigma ={m\pi\over L} \Rightarrow  \lambda_m= \sigma^2={m^2 \pi^2\over L^2},m=1,2,\dots,故選\bbox[red,2pt]{(B)}
解答y=x^2  \Rightarrow y''+Ay'+By = 2+2Ax+Bx^2,\\無法找到常數A,B使得對任意x皆滿足2+2Ax+Bx^2=0,故選\bbox[red,2pt]{(A)}
解答b_n={2\over L}\int_0^L x^2\sin{2n\pi\over L}x\;dx \\={2\over L} \left.\left[ -{L\over 2n\pi}x^2\cos\left({2n\pi\over L}x \right)+{L^2\over 2n^2\pi^2}x\sin \left({2n\pi\over L}x \right) +{L^3\over 4n^3\pi^3} \cos\left({2n\pi\over L}x \right) \right] \right|_0^L\\ ={2\over L}\left(-{L^3\over 2n\pi} \right) =-{L^2\over n\pi},故選\bbox[red,2pt]{(C)}
解答p(1,1)+p(1,2)+p(2,1)=1 \Rightarrow 2c+3c+5c=1 \Rightarrow c=1/10\\ \Rightarrow \cases{p(y=1)=p(1,1)+p(2,1)=7c=7/10\\ p(y=2)=p(1,2)=3c=3/10} \\ \Rightarrow \cases{E(Y)=\sum yp(y)=1\cdot p(y=1)+2\cdot p(y=2) =7/10+6/10=13/10\\ E(Y^2)=\sum y^2p(y) =1^2p(y=1)+2^2p(y=2)=7/10+12/10=19/10} \\ \Rightarrow Var(Y)=E(Y^2)-(E(Y))^2={19\over 10}-{169\over 100} ={21\over 100},故選\bbox[red,2pt]{(C)}
解答令\cases{A=(正,正)\\ B=(反,正)\\ C=(正,反)\\ D=(反,反)} \Rightarrow \cases{P(A)=1/6\\ P(B)=1/3\\ P(C)=1/6\\ P(D)=1/3}\\丟三次且符合題意的情形:AAB,AAC,AAD及其排列;\\因此\cases{P(AAB)=C^3_1P(A)P(A)P(B)=1/36\\ P(AAC)=C^3_1P(A)P(A)P(C)=1/72\\ P(AAD)=C^3_1P(A) P(A)P(D)= 1/36} \\ \Rightarrow P(AAB)+ P(AAC)+ P(AAD)=5/72,故選\bbox[red,2pt]{(B)}
解答正確篩檢+錯誤篩檢= 0.05\times 0.78+0.95\times 0.06=0.096,故選\bbox[red,2pt]{(B)}

========================= END ================================

解題僅供參考,其他國考試題及詳解

沒有留言:

張貼留言