Loading [MathJax]/jax/output/CommonHTML/jax.js

2021年12月14日 星期二

110年地方特考-工程數學詳解

110 年特種考試地方政府公務人員考試

等 別: 三等考試
類 科: 電力工程、 電子工程
科 目: 工程數學
甲、 申論題部分: ( 50分)

解答{x1x2+x3=12x1+x2+2x3=23x1+2x2x3=3[111212321][x1x2x3]=[123]Ax=b[111100212010321001]2r1+r2,3r1+r3[111100030210054301]r2/3,r3/5[1111000102/31/30014/53/501/5]r2+r1,r2+r3[1011/31/300102/31/30004/51/151/31/5]5/4r3[1011/31/300102/31/300011/125/121/4]r3+r1[1005/121/121/40102/31/300011/125/121/4]A1=[5/121/121/42/31/301/125/121/4]x=A1b=[1/203/2]{x1=1/2x2=0x3=3/2
解答f(z)=3z+5z(z23z+2)=3z+5z(z1)(z2){Res(f,z=0)=3z+5(z1)(z2)|z=0=52Res(f,z=1)=3z+5z(z2)|z=1=2cf(z)dz=2πi(Res(f,z=0)+Res(f,z=1))=2πi(522)=πi
解答a0=12πππx+πdx=12π2π2=πan=1πππ(x+π)cos(nx)dx=0bn=1πππ(x+π)sin(nx)dx=1π×2πn(1)n=2n(1)nf(x)=x+π=π+n=12n(1)nsin(nx)=π+2(sin(x)12sin(2x)+13sin(3x)14sin(4x)+)x2=sin(x)12sin(2x)+13sin(3x)14sin(4x)+x=π2π4=1+013+0+15+017+π4=113+1517+,
解答N{A0.25N0.25N×0.05B0.35N0.35N×0.03C0.3N0.3N×0.040.25N×0.05+0.35N×0.03+0.3N×0.04=0.035N{A0.25N×0.05/0.035N=5/14B0.35N×0.03/0.035N=3/10C0.3N×0.04/0.035N=12/35ABC514,310,1235

乙、 測驗題部分: (50分)

解答k1p1+k2p2+k3p3=0(k1+2k2+k3)x2+(2k1+ak2+k3)x+(k1k2+bk3)=0{k1+2k2+k3=02k1+ak2+k3=0k1k2+bk3=0A=[1212a111b]f(a,b)=det(A)=aba+4b+5{f(2,1/2)=60f(1,2)=f(1,4/5)=f(0,5/4)=0(A)
解答T=[1331]=2[cos(π/3)sin(π/3)sin(π/3)cos(π/3)]{r=2θ=60(C)
解答det(A)=24=2det(A5)=(2)5=32(D)
解答v=[111]Av=1vv(A)
解答z=x+iyˉz=xiy(ˉz)2=(x2y2)2xyie(ˉz)2=ex2y2e2xyi=ex2y2(cos(2xy)+isin(2xy))=ex2y2(cos(2xy)isin(2xy))e(ˉz)2ex2y2sin(2xy)(B)
解答det(AλI)=|1λ21aλ213bλ|=λ3+(b+1)λ2+(2ab+7)λ+3a2ab2{b+1=c2ab+7=33a2ab2=2{{a=1/4b=19/2c=21/24a+b+c=2{a=4b=2c=34a+b+c=17(D)
解答f(x)=n=0f[n](π)n!(xπ)ncos(x)=1+12(xπ)2+y=a0+a1(xπ)+a2(xπ)2+a3(xπ)3+y=a1+2a2(xπ)+3a3(xπ)2+4a4(xπ)3+y+cos(x)y=(a1a0)+(a1+2a2)(xπ)+(12a0a2+3a3)(xπ)2+=1y(π)=A=0=a0{a1a0=1a1+2a2=012a0a2+3a3=0a1=1a2=1/2a3=1/6(B)
解答f(x)=e2x{f(1)=e2=Af(0)=1=Bf(1)=e2=CA+B+C=e2+e2+1(D)
解答

AFDEABC=3/26/2=12(C)
解答fXY(x,y)dxdy=12030A(x+y)dydx=20A(3x+92)dx=15A=1A=1/15fY(y)=fXY(x,y)dx=20115(x+y)dx=115(2+2y)(B)
解答A=[1223254813250204]2r1+r2[1223010213250204]r1+r3[1223010201020204]r2+r3,r2+r4[1223010200000000]rank(A)=2(B)
解答R3(C)(D)3(D)A=[122121086]r1+r2[122043086]2r2+r3[122043000]Rank(A)=2(C)
解答(A)Rank(B)=3(C)BBTdet(B)=det(BT)=012=0det(BTB)=0(D)B0,1,2B+I=1,0,1(B+I)1B+I(B)(B)
解答PPT=P=P2=P3==P123(B)
解答|z+i|<4116=12(A)
解答y+3y+2y=f(t)L{y}+3L{y}+2L{y}=L{f(t)}L{f(t)}=s2Y(s)sy(0)y(0)+3(sY(s)y(0))+2Y(s)=(s2+3s+2)Y(s)=(s2+3s+2)1(x2+3s+2)(s2)2=1(s2)2f(t)=L1{1(s2)2}=te2t(C)
解答y(t)+t0(tτ)y(τ)dτ=1L{y(t)}+L{t0(tτ)y(τ)dτ}=L{1}Y(s)+L{t}L{y(t)}=1sY(s)+1s2Y(s)=1sY(s)=ss2+1y(t)=L1{ss2+1}=cos(t)(A)
解答{M(x,y)=yN(x,y)=xI(x,y)(A)I=1/x2{IM=y/x2IN=1/x{yIM=1/x2xIN=1/x2yIM=xIN(B)I=1/xy{IM=1/xIN=1/y{yIM=0xIN=0yIM=xIN(C)I=1/(x2+y2){IM=y/(x2+y2)IN=x/(x2+y2){yIM=(y2x2)/(x2+y2)2xIN=(y2x2)/(x2+y2)2yIM=xIN(D)I=xy{IM=xy2IN=x2y{yIM=2xyxIN=2xyyIMxIN(D)
解答X:{P(X=0)=(34)3P(X=1)=C31(34)2(14)P(X2)=1P(X=0)P(X=1)=1(34)3C31(34)2(14)=127642764=1064=532(D)
解答XU[a,b]{E(X)=a+b2=0σ(X)=ba12=12{a+b=0ba=12{a=6b=6[14a,14+b]=[14:000:06,14:00+0:06]=[13:54,14:06](A)

===================== END ============================

解題僅供參考,其他國考試題及詳解

沒有留言:

張貼留言