110 年特種考試地方政府公務人員考試
等 別: 三等考試
類 科: 電力工程、 電子工程
科 目: 工程數學
甲、 申論題部分: ( 50分)
解答:f(z)=−3z+5z(z2−3z+2)=−3z+5z(z−1)(z−2)⇒{Res(f,z=0)=−3z+5(z−1)(z−2)|z=0=52Res(f,z=1)=−3z+5z(z−2)|z=1=−2⇒∮cf(z)dz=2πi(Res(f,z=0)+Res(f,z=1))=2πi(52−2)=πi
解答:a0=12π∫π−πx+πdx=12π⋅2π2=πan=1π∫π−π(x+π)cos(nx)dx=0bn=1π∫π−π(x+π)sin(nx)dx=1π×−2πn(−1)n=−2n(−1)n⇒f(x)=x+π=π+∞∑n=1−2n(−1)nsin(nx)=π+2(sin(x)−12sin(2x)+13sin(3x)−14sin(4x)+⋯)⇒x2=sin(x)−12sin(2x)+13sin(3x)−14sin(4x)+⋯取x=π2⇒π4=1+0−13+0+15+0−17+⋯⇒π4=1−13+15−17+⋯,故得證
解答:假設生產總量為N⇒{A機器產量為0.25N,其中瑕疵品數量為0.25N×0.05B機器產量為0.35N,其中瑕疵品數量為0.35N×0.03C機器產量為0.3N,其中瑕疵品數量為0.3N×0.04⇒瑕疵品數量為0.25N×0.05+0.35N×0.03+0.3N×0.04=0.035N⇒取出一瑕疵品,{此瑕疵品為A機器出產的機率為0.25N×0.05/0.035N=5/14此瑕疵品為B機器出產的機率為0.35N×0.03/0.035N=3/10此瑕疵品為C機器出產的機率為0.3N×0.04/0.035N=12/35⇒取出一瑕疵品,此瑕疵品為A、B、C機器出產的機率各是514,310,1235
乙、 測驗題部分: (50分)
解答:k1p1+k2p2+k3p3=0⇒(k1+2k2+k3)x2+(−2k1+ak2+k3)x+(k1−k2+bk3)=0⇒{k1+2k2+k3=0−2k1+ak2+k3=0k1−k2+bk3=0⇒A=[121−2a11−1b]⇒f(a,b)=det(A)=ab−a+4b+5⇒{f(2,1/2)=6≠0f(−1,−2)=f(1,−4/5)=f(0,−5/4)=0,故選(A)解答:T=[1−√3√31]=2[cos(π/3)−sin(π/3)sin(π/3)cos(π/3)]⇒{r=2θ=60∘,故選(C)
解答:det(A)=2−4=−2⇒det(A5)=(−2)5=−32,故選(D)
解答:v=[111]⇒Av=1⋅v⇒v是特徵向量,故選(A)
解答:z=x+iy⇒ˉz=x−iy⇒(ˉz)2=(x2−y2)−2xyi⇒e(ˉz)2=ex2−y2⋅e−2xyi=ex2−y2(cos(−2xy)+isin(−2xy))=ex2−y2(cos(2xy)−isin(2xy))⇒e(ˉz)2的虛部為−ex2−y2sin(2xy),故選(B)
解答:det(A−λI)=|1−λ21a−λ213b−λ|=−λ3+(b+1)λ2+(2a−b+7)λ+3a−2ab−2⇒{b+1=−c2a−b+7=−33a−2ab−2=2⇒{{a=−1/4b=19/2c=−21/2⇒4a+b+c=−2{a=−4b=2c=−3⇒4a+b+c=−17,故選(D)
解答:由泰勒級數f(x)=∞∑n=0f[n](π)n!(x−π)n⇒cos(x)=−1+12(x−π)2+⋯y=a0+a1(x−π)+a2(x−π)2+a3(x−π)3+⋯⇒y′=a1+2a2(x−π)+3a3(x−π)2+4a4(x−π)3+⋯⇒y′+cos(x)y=(a1−a0)+(−a1+2a2)(x−π)+(12a0−a2+3a3)(x−π)2+⋯=1由於y(π)=A=0=a0⇒{a1−a0=1−a1+2a2=012a0−a2+3a3=0⇒a1=1⇒a2=1/2⇒a3=1/6,故選(B)
解答:f(x)=e−2x⇒{f(−1)=e2=Af(0)=1=Bf(1)=e−2=C⇒A+B+C=e2+e−2+1,故選(D)
解答:
梯形AFDE面積△ABC面積=3/26/2=12,故選(C)
解答:∫∫fXY(x,y)dxdy=1⇒∫20∫30A(x+y)dydx=∫20A(3x+92)dx=15A=1⇒A=1/15⇒fY(y)=∫fXY(x,y)dx=∫20115(x+y)dx=115(2+2y),故選(B)
解答:A=[12232548−1−3−2−50204]−2r1+r2→[12230102−1−3−2−50204]r1+r3→[122301020−10−20204]r2+r3,−r2+r4→[1223010200000000]⇒rank(A)=2,故選(B)
解答:R3的基底只需考慮(C)與(D),其它數量不是3;(D)A=[122−121086]r1+r2→[122043086]−2r2+r3→[122043000]⇒Rank(A)=2,非基底,故選(C)
解答:(A)特徵值為三相異值⇒Rank(B)=3(C)B與BT有相同的特徵值且det(B)=det(BT)=0⋅1⋅2=0⇒det(BTB)=0(D)B的特徵值0,1,2⇒B+I的特徵值=−1,0,1⇒(B+I)−1與B+I有相同特徵值只有(B)尚難確定,故選(B)
解答:P為投影矩陣⇒PT=P=P2=P3=⋯=P123,故選(B)
解答:|z+i|<4√116=12,故選(A)
解答:y″+3y′+2y=f(t)⇒L{y″}+3L{y′}+2L{y}=L{f(t)}⇒L{f(t)}=s2Y(s)−sy(0)−y′(0)+3(sY(s)−y(0))+2Y(s)=(s2+3s+2)Y(s)=(s2+3s+2)⋅1(x2+3s+2)(s−2)2=1(s−2)2⇒f(t)=L−1{1(s−2)2}=te2t,故選(C)
解答:y(t)+∫t0(t−τ)y(τ)dτ=1⇒L{y(t)}+L{∫t0(t−τ)y(τ)dτ}=L{1}⇒Y(s)+L{t}L{y(t)}=1s⇒Y(s)+1s2Y(s)=1s⇒Y(s)=ss2+1⇒y(t)=L−1{ss2+1}=cos(t),故選(A)
解答:令{M(x,y)=−yN(x,y)=x積分因子I(x,y)(A)I=1/x2⇒{IM=−y/x2IN=1/x⇒{∂∂yIM=−1/x2∂∂xIN=−1/x2⇒∂∂yIM=∂∂xIN(B)I=1/xy⇒{IM=−1/xIN=1/y⇒{∂∂yIM=0∂∂xIN=0⇒∂∂yIM=∂∂xIN(C)I=1/(x2+y2)⇒{IM=−y/(x2+y2)IN=x/(x2+y2)⇒{∂∂yIM=(y2−x2)/(x2+y2)2∂∂xIN=(y2−x2)/(x2+y2)2⇒∂∂yIM=∂∂xIN(D)I=xy⇒{IM=−xy2IN=x2y⇒{∂∂yIM=−2xy∂∂xIN=2xy⇒∂∂yIM≠∂∂xIN,故選(D)
解答:X:黑桃牌的次數⇒{P(X=0)=(34)3P(X=1)=C31(34)2(14)⇒P(X≥2)=1−P(X=0)−P(X=1)=1−(34)3−C31(34)2(14)=1−2764−2764=1064=532,故選(D)
解答:X∼U[a,b]⇒{E(X)=a+b2=0σ(X)=b−a√12=√12⇒{a+b=0b−a=12⇒{a=−6b=6⇒區間為[14−a,14+b]=[14:00−0:06,14:00+0:06]=[13:54,14:06],故選(A)
解答:A=[12232548−1−3−2−50204]−2r1+r2→[12230102−1−3−2−50204]r1+r3→[122301020−10−20204]r2+r3,−r2+r4→[1223010200000000]⇒rank(A)=2,故選(B)
解答:R3的基底只需考慮(C)與(D),其它數量不是3;(D)A=[122−121086]r1+r2→[122043086]−2r2+r3→[122043000]⇒Rank(A)=2,非基底,故選(C)
解答:(A)特徵值為三相異值⇒Rank(B)=3(C)B與BT有相同的特徵值且det(B)=det(BT)=0⋅1⋅2=0⇒det(BTB)=0(D)B的特徵值0,1,2⇒B+I的特徵值=−1,0,1⇒(B+I)−1與B+I有相同特徵值只有(B)尚難確定,故選(B)
解答:P為投影矩陣⇒PT=P=P2=P3=⋯=P123,故選(B)
解答:|z+i|<4√116=12,故選(A)
解答:y″+3y′+2y=f(t)⇒L{y″}+3L{y′}+2L{y}=L{f(t)}⇒L{f(t)}=s2Y(s)−sy(0)−y′(0)+3(sY(s)−y(0))+2Y(s)=(s2+3s+2)Y(s)=(s2+3s+2)⋅1(x2+3s+2)(s−2)2=1(s−2)2⇒f(t)=L−1{1(s−2)2}=te2t,故選(C)
解答:y(t)+∫t0(t−τ)y(τ)dτ=1⇒L{y(t)}+L{∫t0(t−τ)y(τ)dτ}=L{1}⇒Y(s)+L{t}L{y(t)}=1s⇒Y(s)+1s2Y(s)=1s⇒Y(s)=ss2+1⇒y(t)=L−1{ss2+1}=cos(t),故選(A)
解答:令{M(x,y)=−yN(x,y)=x積分因子I(x,y)(A)I=1/x2⇒{IM=−y/x2IN=1/x⇒{∂∂yIM=−1/x2∂∂xIN=−1/x2⇒∂∂yIM=∂∂xIN(B)I=1/xy⇒{IM=−1/xIN=1/y⇒{∂∂yIM=0∂∂xIN=0⇒∂∂yIM=∂∂xIN(C)I=1/(x2+y2)⇒{IM=−y/(x2+y2)IN=x/(x2+y2)⇒{∂∂yIM=(y2−x2)/(x2+y2)2∂∂xIN=(y2−x2)/(x2+y2)2⇒∂∂yIM=∂∂xIN(D)I=xy⇒{IM=−xy2IN=x2y⇒{∂∂yIM=−2xy∂∂xIN=2xy⇒∂∂yIM≠∂∂xIN,故選(D)
解答:X:黑桃牌的次數⇒{P(X=0)=(34)3P(X=1)=C31(34)2(14)⇒P(X≥2)=1−P(X=0)−P(X=1)=1−(34)3−C31(34)2(14)=1−2764−2764=1064=532,故選(D)
解答:X∼U[a,b]⇒{E(X)=a+b2=0σ(X)=b−a√12=√12⇒{a+b=0b−a=12⇒{a=−6b=6⇒區間為[14−a,14+b]=[14:00−0:06,14:00+0:06]=[13:54,14:06],故選(A)
===================== END ============================
解題僅供參考,其他國考試題及詳解
沒有留言:
張貼留言