2023年6月11日 星期日

112年新北市國中教甄聯招-數學詳解

新北市立國民中學 112 學年度教師聯合甄選

科目:數學科
選擇題:共40題,每題2.5分,總分100分。

解答:$$5^2+9^2=106 \lt 121=11^2,故選\bbox[red, 2pt]{(C)}$$
解答:$$kx-y=2 \Rightarrow y=kx-2代入x+2y=2 \Rightarrow x={6\over 2k+1} \Rightarrow y=1-{3\over 2k+1}\\ \Rightarrow \cases{{6\over 2k+1}\gt 0\\ 1-{3\over 2k+1}\gt 0} \Rightarrow k\gt 1,故選\bbox[red, 2pt]{(B)}$$
解答:$$g(x)=f(x-2)=(x-2)(x-1)x(x+1)(x+2)\\ \Rightarrow \cases{f(a)=(a-2)(a-1)a(a+1)(a+2) \\f(-a)=(a+2)(a+1)(-a)(a-1)(a-2)=-f(a)} \Rightarrow f(-a)=-f(a),故選\bbox[red, 2pt]{(A)}$$
解答:$$\begin{array} {rr|rr|rr} x& 2^x \mod 100 & x & 2^x \mod 100 & x & 2^x \mod 100\\\hline 1 & 2 & 11 & 48 & 21 & 52\\ 2 & 4 & 12 & 96 & 22 & 4\\ 3& 8 & 13& 92 & 23 & 8\\ 4& 16& 14& 84 & 24& 16\\ 5& 32& 15& 58 & 25& 32\\ 6& 64& 16& 36 & 26 & 64\\ 7& 28 &17  & 72 & 27 & 28\\ 8& 56 & 18& 44 & 28 & 56\\ 9& 12& 19 & 88 & 29 & 12\\ 10&24& 20& 76 & 30& 24\end{array} \\ 從上表可知,循環數為20 \Rightarrow 82589933 = 4129496\cdot 20+13 \Rightarrow 餘數92 \Rightarrow 2^{82589933}-1的末兩尾為91\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$連續三整數:a-1,a,a+1 \Rightarrow (a+1)^2=a^2+(a-1)^2 \Rightarrow a^2-4a=0 \Rightarrow a=4\\ \Rightarrow 只有一個直角三角形,邊長為3,4,5,故選\bbox[red, 2pt]{(A)}$$
解答
$$作\overline{CE}\bot \overline{AB} \Rightarrow \overline{AE}=\overline{CD}=1 \Rightarrow \overline{BE}=2-1=1 \Rightarrow \overline{CE}=\sqrt{3^2-1^2}=2\sqrt 2\\ P為\overline{AD}中點\Rightarrow \overline{AP} =\overline{PD}= \overline{CE}\div 2=\sqrt 2 \\ 假設\overline{PQ}\bot \overline{BC}, 梯形ABCD面積=\triangle APB+\triangle CDP+\triangle BCP \Rightarrow 3\sqrt 2 =\sqrt 2+{\sqrt 2\over 2}+{3\over 2}\cdot \overline{PQ}\\ \Rightarrow \overline{PQ}=\sqrt 2,故選\bbox[red, 2pt]{(B)}$$
解答:$$2\overrightarrow{AC}=\overline{BC} \Rightarrow A為\overline{BC}的中點 \Rightarrow \overrightarrow{DA}={1\over 2}\overline{DB}+ {1\over 2}\overrightarrow{DC} \Rightarrow \overrightarrow{DC}= 2\overrightarrow{DA}-\overrightarrow{DB},故選\bbox[red, 2pt]{(B)}$$
解答:$$圓上的格子點:\cases{A(5,0),A'(-5,0)\\ B(4,3), B'(-4,-3)\\ C(3,4),C'(-3,-4)\\ D(0,5),D'(0,-5)\\ E(-3,4),E'(3,-4)\\ F(-4,3), F'(4,-3)} \Rightarrow 六條直線\cases{\overline{AA'} \\\overline{BB'} \\\overline{CC'} \\\overline{DD'} \\ \overline{EE'} \\\overline{FF'} }通過原點,故選\bbox[red, 2pt]{(D)}$$
解答:$$2x+3y=3 \Rightarrow y=1-{2\over 3}x 代入B\Rightarrow x^2+4x+4-{8\over 3}x+3=0 \\ \Rightarrow x^2+{4\over 3}x+7=0 \Rightarrow 判別式: {16\over 9}-28 \lt 0 \Rightarrow 無實數解,故選\bbox[red, 2pt]{(A)}$$
解答:$$x^2+4y^2=36 \Rightarrow {x^2\over 36}+{y^2\over 9}=1 \Rightarrow \cases{a=6\\b =3}\Rightarrow 正交弦長={2b^2\over a}={18\over 6}=3\\ 過焦弦長為3,4,\dots,12(貫軸長); 而其中長度3的有二條,長度12的只有一條,其它的各有四條\\ 因此共有2+4\times 8+1=35條,故選\bbox[red, 2pt]{(D)}$$
解答:$$本題\bbox[cyan, 2pt]{送分}$$
解答:$$\cases{2^0\equiv 1 \mod 9\\ 2^1\equiv 2 \mod 9\\ 2^2\equiv 4 \mod 9\\ 2^3\equiv 8 \mod 9\\ 2^4\equiv 7 \mod 9\\ 2^5\equiv 5 \mod 9\\ 2^6\equiv 1 \mod 9 } \Rightarrow 循環數為6 \Rightarrow 2^{23}=2^{3\cdot 6+5} \equiv 5\mod 9\\ 因此20^{23} =10^{23}\times 2^{23} \equiv 2^{23}\mod 9 =5,故選\bbox[red, 2pt]{(C)}$$
解答:$$P^n_3=6C^n_4 \Rightarrow {n!\over (n-3)!}={6\cdot n!\over 4!  (n-4)!} \Rightarrow 6(n-3)!=24(n-4)! \Rightarrow 6(n-3)=24\\ \Rightarrow n-3=4 \Rightarrow n=7,故選\bbox[red, 2pt]{(B)}$$
解答
$$八個頂點可形成C^8_3=56個三角形,其中每個頂點可形三個不同的直角三角形,如上圖\\ 因此銳角或鈍角三角形共有56-8\times 3=32個,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{只有甲命中:0.8 (1-0.6)(1-0.7) =0.096\\只有乙命中:(1-0.8)\cdot 0.6 \cdot(1-0.7) =0.036\\只有丙命中:(1-0.8) (1-0.6)\cdot 0.7 =0.056} \\ \Rightarrow 0.096+0.036+0.056=0.188 =18.8\%,故選\bbox[red, 2pt]{(D)}$$
解答:$$假設\cases{勝a場\\ 負b場\\ 平手c場 } \Rightarrow \cases{a+b+c=15\\ 3a+c=33} \Rightarrow \begin{array}{} a & b& c\\\hline 11& 4 &0\\ 10 & 2 & 3\\ 9 &0 &6 \\\hline\end{array},共三場,故選\bbox[red, 2pt]{(A)}$$
解答


$$每個頂點有3個非等腰直角三角形,共有3\times 8=24,故選\bbox[red, 2pt]{(B)}$$
解答:$$f(x)=(x+2)(x-1)^2 \Rightarrow f'(x)=(x-1)^2+2(x+2)(x-1)=3(x-1)(x+1)\\ \Rightarrow f'(x)=3(x+1)+3(x-1)=6x\\\ (A)\bigcirc: \cases{f'(1)=0 \\f''(1)=6\gt 0} \Rightarrow f(1)為相對極小值\\(B)\bigcirc: \cases{f'(-1)=0\\ f'(-1)-6\lt 0} \Rightarrow f(-1)為相對極大值 \\(C) \bigcirc: f(1)=0 \Rightarrow 與x軸交於(1,0) \\(D)\times: f(1)=0為極小值,不是反曲點\\,故選\bbox[red, 2pt]{(D)}$$
解答:$$a_9=1 \Rightarrow a_k=r^{k-9} \Rightarrow P_n=r^{-8}\cdot r^{-7}\cdots r^{n-9} \Rightarrow P_{17}=1\\(A)\times: \cases{P_1= r^{-8}\\ P_{19}=P_{17}a_{18}a_{19}=r^{10}\cdot r^{11}} \Rightarrow P_1\ne P_{19} \\(B)\times:\cases{P_3=r^{-8} \cdot r^{-7}\cdot r^{-6}=r^{-21} \\ P_{17}=1} \Rightarrow P_3\ne P_{17} \\(C)\bigcirc: P_{12}=P_5\cdot (a_6a_7a_8)a_9(a_{10}a_{11}a_{12})=P_5 \\(D)\times: P_{11}=P_7\cdot a_8a_9a_{10}a_{11}=P_7a_{11}\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$|x-a|+|x-b|\lt 1 \Rightarrow x在a,b之間且a,b 相距小於1\\若無解,則|a-b|\ge 1,故選\bbox[red, 2pt]{(C)}$$
解答:$$7個圓形=360^\circ \times 7=2520^\circ = 凸n邊形內角總和=(n-2)\times 180 \Rightarrow n=16,故選\bbox[red, 2pt]{(B)}$$
解答:$$y=acx+bc不過第三象限\Rightarrow \cases{ac\lt 0\\ bc\gt 0} \Rightarrow (a,b,c)=(正,負,負),(負,正,正)\\ y=ax^2+bx+c \Rightarrow 極值位於x=-{b\over 2a}\gt 0 \Rightarrow 只有(B),(C)可能對,\\ (B)與(C)y 截距\lt 0 \Rightarrow c\lt 0 \Rightarrow a\gt 0 \Rightarrow 凹向上,故選\bbox[red, 2pt]{(C)}$$
解答:$$(a+b+c)^2 =a^2+b^2+c^2+2(ab+bc+ca) \Rightarrow 4=a^2+b^2+c^2-8 \Rightarrow a^2+b^2+c^2=12\\ 又a^3+b^3+c^3-3abc=(a+b+c) (a^2+b^2+c^2-(ab+bc+ca)) \\\Rightarrow a^3+b^3+c^3+3=2\cdot (12+4) \Rightarrow  a^3+b^3+c^3=29,故選\bbox[red, 2pt]{(A)}$$
解答:$$令\cases{A=a^2\\ B=b^2\\ C=c^2} \Rightarrow \cases{D=(40-a)(24-c)\\ E=(24-a)(40-c)} \Rightarrow E=D+128 \Rightarrow c=a+8 \cdots(1)\\ 又\cases{40-a+40-b=40+b\\ 24-a+24-c=24+b} \Rightarrow a+c=32 \cdots(2) \\ 由(1)及(2) \Rightarrow \cases{a=12\\ c=20} \Rightarrow b=8 \Rightarrow a^2+b^2+c^2= 144+ 64+ 400 =608,故選\bbox[red, 2pt]{(B)}$$
解答:$$令\cases{扇形半徑r\\ 扇形夾角\theta},此題相當於已知2r+r\theta=64,求r^2\pi\cdot {\theta\over 2\pi}={1\over 2}r^2\theta 之最大值\\ 算幾不等式:{2r+r\theta\over 2}\ge \sqrt{2r^2\theta} \Rightarrow 32^2 \ge 2r^2\theta \Rightarrow r^2\theta\le 256,故選\bbox[red, 2pt]{(D)}$$
解答:$$\cases{A(0,-1)\\ B(1,0)} \Rightarrow \cases{L=\overleftrightarrow{AB}: x-y=1\\ \overline{AB}=\sqrt 2} \Rightarrow \triangle ABC面積={1\over 2}\cdot \overline{AB}\cdot d(C,L)={\sqrt 2\over 2} \cdot d(C,L)\\ 令C(\cos \theta+1,\sin\theta+2) \Rightarrow d(C,L)={|\cos\theta-\sin\theta-2|\over \sqrt 2} ={|\sqrt 2\sin(\theta+\alpha)-2|\over \sqrt 2} \\ \Rightarrow d(C,L)的最大值={2+\sqrt 2\over \sqrt 2} \Rightarrow \triangle ABC面積最大值={\sqrt 2\over 2} \cdot{2+ \sqrt 2\over \sqrt 2}=1+{\sqrt 2\over 2},故選\bbox[red, 2pt]{(C)}$$
解答:$$將(0,0),(1,1), (2,0) 代入各選項,只有(D)皆符合(1,1),(2,0),(3,1),故選\bbox[red, 2pt]{(D)}$$
解答:$$4b=3c \Rightarrow b:c=3:4 \Rightarrow \triangle ABD:\triangle ADC=3:4 \Rightarrow 10+a+b:12+8+c=3:4 \\\Rightarrow 10+a+b:20+{4\over 3}b=3:4 \Rightarrow 60+4b=40+4a+4b \Rightarrow a=5,故選\bbox[red, 2pt]{(B)}$$
解答:$$(a,b,c) \to (b+c-1,c+a-1,a+b+3) \equiv Tx,其中T=\begin{bmatrix}0 & 1& 1& -1 \\1 & 0& 1 & -1\\ 1 & 1& 0 & 3\\ 0 & 0 & 0 & 1 \end{bmatrix},x=\begin{bmatrix}a \\ b \\c \\1 \end{bmatrix}\\ 而T=\left[\begin{matrix}-1 & -1 & -1 & 1 \\-1 & 1 & 0 & 1 \\1 & 0 & 1 & 1 \\1 & 0 & 0 & 0\end{matrix}\right]\left[\begin{matrix}1 & 0 & 0 & 0 \\0 & -1 & 0 & 0 \\0 & 0 & -1 & 0 \\0 & 0 & 0 & 2\end{matrix} \right] \left[\begin{matrix}0 & 0 & 0 & 1 \\ \frac{-1}{3} & \frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \\\frac{-1}{3} & \frac{-1}{3} & \frac{2}{3} & \frac{-4}{3} \\\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{matrix}\right]\\ \Rightarrow T^7= \left[\begin{matrix}-1 & -1 & -1 & 1 \\-1 & 1 & 0 & 1 \\1 & 0 & 1 & 1 \\1 & 0 & 0 & 0\end{matrix}\right]\left[\begin{matrix}1 & 0 & 0 & 0 \\0 & -1 & 0 & 0 \\0 & 0 & -1 & 0 \\0 & 0 & 0 & 2^7\end{matrix} \right] \left[\begin{matrix}0 & 0 & 0 & 1 \\ \frac{-1}{3} & \frac{2}{3} & \frac{-1}{3} & \frac{2}{3} \\\frac{-1}{3} & \frac{-1}{3} & \frac{2}{3} & \frac{-4}{3} \\\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{matrix}\right]=\left[\begin{matrix}42 & 43 & 43 & 41 \\43 & 42 & 43 & 41 \\43 & 43 & 42 & 45 \\0 & 0 & 0 & 1\end{matrix}\right] \\ \Rightarrow T^7\begin{bmatrix}a \\ -2\\ b\\ 1 \end{bmatrix}= \left[\begin{matrix}42a+43b-45 \\43a+43b-43 \\43a+42b-41 \\1 \end{matrix}\right] =\begin{bmatrix} 169\\172 \\170\\1 \end{bmatrix} \Rightarrow 43a+43b-43 =172\\ \Rightarrow a+b=(172+43)\div 43=5,故選\bbox[red, 2pt]{(D)}$$
解答:$$x^2+4y^2+8x+12=0 \Rightarrow {(x+4)^2\over 4}+y^2=1 \Rightarrow \cases{x=2\cos\theta-4\\ y=\sin\theta}\\ \Rightarrow x^2+2y^2= 4\cos^2\theta-16\cos \theta+16+2\sin^2\theta =2\cos^2\theta-16\cos\theta+18\\ 當\cos\theta=-1時,有最大值=2+16+18=36,故選\bbox[red, 2pt]{(A)}$$
解答:$$令A=\begin{bmatrix}a & b &c\\  d& e &f \end{bmatrix} \Rightarrow \cases{A\begin{bmatrix}1 \\2\\3 \end{bmatrix}=\begin{bmatrix}1 \\1 \end{bmatrix} \Rightarrow \cases{a+2b+3c=1 \cdots(1)\\ d+2e+3f=1 \cdots(2)} \\ A\begin{bmatrix}0 \\1 \\2 \end{bmatrix}=\begin{bmatrix}2 \\3 \end{bmatrix} \Rightarrow \cases{b+2c=2 \cdots(3)\\ e+2f=3 \cdots(4)}}\\ 因此\cases{(1)-2\times (3) \Rightarrow a-c=-3\\ (2)-2\times(4) \Rightarrow d-f=-5} \Rightarrow A\begin{bmatrix}1 \\0\\-1 \end{bmatrix}=\begin{bmatrix}a-c \\d-f \end{bmatrix}=\begin{bmatrix}-3 \\-5 \end{bmatrix},故選\bbox[red, 2pt]{(C)}$$
解答:$$\sqrt{2^x(2^x-8)+x(x-2)+17} +\sqrt{2^x(2^x-2)+ x(x-10)+26}\\ =\sqrt{(2^x-4)^2+(x-1)^2} +\sqrt{(2^x-1)^2+(x-5)^2} \\ =\overline{PA}+ \overline{PB},其中\cases{P(2^x,x)在y=\log_2 x上\\ A(4,1)\\ B(1,5)} \Rightarrow 最小值=\overline{AB}=5,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{(2-{1\over x})^3 = \sum_{m=0}^3 C^3_m(-{1\over x})^m\cdot 2^{3-m} \\[1ex] ({1\over 2}-x)^6 = \sum_{n=0}^6 C^6_n(-x)^n ({1\over 2})^{6-n}}\\ \Rightarrow (2-{1\over x})^3  ({1\over 2}-x)^6中x^4係數=(n=4,m=0) +(n=5,m=1)+(n=6,m=2)的係數和\\ =8C^6_4({1\over 2})^2+C^3_1(-1)\cdot 2^2 C^6_5 (-1)^5 ({1\over 2})+ C^3_2\cdot 2\cdot 1=30+36+6=72,故選\bbox[red, 2pt]{(A)}$$
解答:$$取h(x)=f(x)-g(x)-x \Rightarrow h(x)=0的三根為1,2,3 \Rightarrow h(x)=2(x-1)(x-2)(x-3) \\ \Rightarrow h(4)=f(4)-g(4)-4=2\cdot 3\cdot 2\cdot 1=12 \Rightarrow f(4)-g(4)=16,故選\bbox[red, 2pt]{(D)}$$
解答:$$,故選\bbox[red, 2pt]{()}$$
解答:$$f(a,b,c)={a^2+b^2+c^2\over ab+bc} \Rightarrow \cases{f_a=0\\ f_b=0\\ f_c=0} \Rightarrow \cases{2a(ab+bc)= a^2b\\ 2b(ab+bc)= b^2(a+c)\\ 2c(ab+bc)= c^2b} \Rightarrow a=c \\ \Rightarrow f(a,b,a)={2a^2+b^2\over 2ab}={a\over b}+{b\over 2a} \ge 2\sqrt{{a\over b}\cdot {b\over 2a}}=\sqrt 2,故選\bbox[red, 2pt]{(C)}$$
解答:$$a+b=2c+1 \Rightarrow (a+b)^2=4c^2+4c+1 \Rightarrow (a+b)^2-(a^2+b^2)=2c+2 \Rightarrow ab=c+1\\ 再由算幾不等式:a+b\ge 2\sqrt{ab} \Rightarrow 2c+1\ge 2\sqrt{c+1} \Rightarrow 4c^2-3\ge 0 \Rightarrow (2c+\sqrt 3)(2c-\sqrt 3)\ge 0\\ \Rightarrow c\ge {\sqrt 3\over 2}(c\le -{\sqrt 3\over 2}不合,違反a,b,c為正數),故選\bbox[red, 2pt]{(B)}$$
解答:$$取f(x)=x^2+ax+b \Rightarrow \cases{f(1)=a+b+1\\ f(2)=2a+b+4\\ f(3)=3a+b+9} \Rightarrow f(2)-f(1)=a+3\\ 依題意\cases{-3\le a+3\le 2\\ -1\le 3a+b+9\le 2} \Rightarrow \cases{-6\le a\le -1 \\ -10 \le 3a+b\le -7} \Rightarrow -7\le b\le 11\\ \Rightarrow f(0)=b ,最大值=11,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{abc+d=5/2\\ bcd+a=5/2\\ cda+b=5/2\\ dab+c=5/2} \Rightarrow \cases{abcd+d^2=5d/2\\ abcd+a^2=5a/2\\ abcd+b^2=5b/2 \\ abcd+c^2=5c/2} \Rightarrow \cases{1+d^2=5d/2\\ 1+a^2=5a/2\\ 1+b^2=5b/2 \\ 1+c^2=5c/2} \Rightarrow \cases{d=2,1/2\\ a=2,1/2\\ b=2,1/2\\ c=2,1/2}\\ \Rightarrow (a,b,c,d)= (2,2,1/2,1/2)及其排列,共有C^4_2=6組解,故選\bbox[red, 2pt]{(C)}$$
解答:$$\lim_{x\to 2}{f(x)\over x-2}=3 \Rightarrow \cases{f(2)=0\\ f'(2)=3}\\ g(x)=\int_0^x (f(t)f'(t))\,dt  \Rightarrow g'(x)=f(x)f'(x) \Rightarrow g''(x)=(f'(x))^2+ f(x)f''(x)\\\Rightarrow g''(2)=3^2+0=9,故選\bbox[red, 2pt]{(C)}$$




================= END ==============

解題僅供參考,其他教甄試題及詳解

8 則留言:

  1. 老師好 請問第一題的D 5+7=12沒有>13 是不是無法構成三角形呢

    回覆刪除
  2. 老師好
    第9題,題目中的B集合是否少了一個y^2呢?

    回覆刪除
    回覆
    1. 應該沒有少y^2, 是我看走眼了,待會再修,答案不變,只是圓變成拋物線,交集依然是空集合!

      刪除
  3. 29題,我提供一個解法
    將一次移動後的xyz坐標相加,可得2(a+b+c)+1(可知,移動後的坐標關係)
    兩次移動,得2[2(a+b+c)+1]+1
    依此類推
    七次移動,得2^7(a+b+c)+127
    原坐標為(a,-2,b)
    七次移動後的坐標(169,172,170) 數字相加,可得511
    代入七次移動的關係
    2^7(a+(-2)+b)+127=511
    整理後,即可得a+b

    想問老師,這題是否沒辦法分別求出a跟b?

    回覆刪除