Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2023年6月17日 星期六

112年竹東高中教甄-數學詳解

國立竹東高級中學 112 學年度第一次教師甄選

一、填充題:每題5 分,共50 分

解答2023()220232023ai220232023
解答[01321021]3r1+r2r2[01321375]17r1[01751341375]5r2+r1r1[521691375][abcd]=[5213]
解答
解答f(x)=02f(x)=a(x2)(xb)g(x)=f(f(x))=a[a(x2)(xb)2][a(x2)(xb)b]=a3(x2(b+2)x+2b2a)(x2(b+2)x+2bba)a3f1(x)f2(x){{f1=(x5)2f2<0{a=2/9b=8{f2=(x5)2f1<0{a=8/9b=8f10f(0)=2ab=2(29)8=329
解答{α=3+2β=32{α+β=23αβ=1β=1/αan=α2nbn=α2n+1α2n=α2n+β2nb2023=(3+2)4046+(32)4046=(5+26)2023+(526)2023=2023n=0(2023n)5n(26)2023n+2023n=0(2023n)5n(26)2023n=21012k=1(20232k1)52k1(26)20242k10,b20230
解答{O=(0,0)A(z1)B(z2),{|z1|=1|z2|=2|z1z2|=1{¯OA=1¯OB=2¯AB=1{OAB=90AOB=OBA=45{A(cosθ,sinθ)B(2cos(θ+π4),2sin(θ+π4))P(1,0)|z11|2+|z21|2=¯AP2+¯BP2f(θ)f(θ)=(cosθ1)2+sin2θ+(2cos(θ+π4)1)2+2sin2(θ+π4)=52cosθ22cos(θ+π4)f(θ)=02sinθ+22sin(θ+π4)=02sinθ+cosθ=0tanθ=12{sinθ=1/5cosθ=2/5f(tan1(12))=52252(25+15)=5105=525
解答
P=¯BE¯AD¯DQ¯BE{¯BEB¯AD¯BE¯BE¯AD¯AP=¯PD=¯AD÷2=2{¯BD=¯DC¯DQ¯BE¯DQ=12¯BE=2;¯PE=12¯DQ=1¯BP=41=3{¯CD=¯DB=¯AB=32+22=13¯CQ=¯QE=¯AE=21+12=5ABC=3(13+5)
解答,y0{3p0p+403p4p=4,3,,38:p=3,y=f(x),
解答{f(α)=βf(2α)=4β(α+(2α)2,β+(4β)2)=(1,2)f(1)=06a(1)+2b=0b=3aad=3{(a,d)=(3,1)b=9(a,d)=(3,1)b=9(a,d)=(1,3)b=3(a,d)=(1,3)b=3{f1=3x3+9x2+cx+1f2=3x39x2+cx1f3=x3+3x2+cx+3f4=x33x2+cx3f(1)=2{f1=3x3+9x2+9x+1f2=3x39x25x1f3=x3+3x2+7x+3f4=x33x23x3{f1=9x2+18+9f2=9x218x5f3=3x2+6x+7f4=3x26x3{f1=0f2>0f3<0f4=0f2(2),f(x)=f2=3x39x25x1
解答m,m46,12{9m/6m69m54(1){3m/4m9n(20){3m/420m920m29(2)(1)(2)m12m=4836m=48m=36(n)3524861343n=35+24=59
解答y=4+4sint+2+2costy=0cost1+sintsint2+2cost=02cos2t+2cos3t=sin2t+sin3t,{sint=a/ccost=b/c,a2+b2=c22b2c2+2b3c3=a2c2+a3c3c(a22b)=2b3a3a2+b2(a22b)=2b3a33a=4btant=43{sint=4/5cost=3/5y=4+165+2+65=105=25
解答x=aCΓ{¯PA=a2/5¯PB=24a2lim
解答{a^2+ab+b^2\over ab-1}=k\\ \text{Cases I}\; ab=0 \Rightarrow \cases{a=b=0 \Rightarrow k=\color{blue}0\\ a=0,b\ne 0 \Rightarrow k=-b^2 \lt 0,不合\\ a\ne 0,b=0 \Rightarrow k=-a^2 \lt 0 ,不合}\\ \text{Cases II}\; a=b\ne 0 \Rightarrow k={3a^2\over a^2-1} =3+{3\over a^2-1} = \color{blue}4 (a=b=2)\\ \text{Cases III }a\gt b=1 \Rightarrow k={a^2+a+1\over a-1}=(a+2)+{3\over a-1} =\color{blue}7(a=2)\\ 現在我們已有k=\bbox[red, 2pt]{0,4,7}, 接著我們要證明整數 k\not \gt 7...
解答\tan{C\over 2}\tan{A-B\over 2}=\tan(90^\circ-{A+B\over 2}) \tan{A-B\over 2}= \cot{A+B\over 2} \tan{A-B\over 2} \\ ={\cos( (A+B)/2) \over \sin((A+B)/2)}\cdot {\sin((A-B)/2)\over \cos((A-B)/2)} ={\sin A-\sin B\over \sin A+\sin B}(積化和差公式)\\ =\bbox[red, 2pt]{a-b\over a+b}(用正弦定理{a\over \sin A}={b\over \sin B})
解答\lim_{n\to \infty}\left( {1\over n}\sqrt{4-({1\over n})^2} + {1\over n}\sqrt{4-({2\over n})^2} + \cdots + {1\over n}\sqrt{4-({n\over n})^2} \right) =\lim_{n\to \infty} \sum_{k=1}^n {1\over n}\sqrt{4-({k\over n})^2} \\=\int_0^1 \sqrt{4-x^2}\,dx =\int_0^{\pi/6} 4\cos^2\theta \,d\theta \quad(取x=2\sin \theta) =\int_0^{\pi/6} 2\cos 2\theta+2\,d\theta =\bbox[red,2pt]{{\sqrt 3\over 2}+{\pi\over 3}}
解答P在直線x+1={y\over 2}={3-z\over -2}上\Rightarrow P(t-1,2t,2t+3),t\in \mathbb R\\ \Rightarrow \overline{AP}+\overline{BP}=\sqrt{(t-9)^2+4t^2+(2t-9)^2}+\sqrt{(t-8)^2+(2t-13)^2 +(2t-10)^2} \\=3\left(\sqrt{(t-3)^2+3^2}+\sqrt{(t-6)^2+1^2}\right) = 3(\overline{RS}+ \overline{RT}),其中\cases{R(t,0)\in x軸\\ S(3,3)\\ T(6,1)}\\ \Rightarrow 最小值=3\overline{ST'},T'=(6,-1) \Rightarrow \overline{AP} +\overline{BP}的最小值=3\sqrt{(6-3)^2 +(-1-3)^2}= \bbox[red,2pt]{15}\\ 此時R=\overline{ST'}與x軸的交點,\overleftrightarrow{ST'}:y=-{4\over 3}x+7與x軸交於({21\over 4},0)\\ 也就是t={21\over 4} \Rightarrow P=\bbox[red,2pt]{\left({17\over 4}, {21\over 2},{27\over 2} \right)}


================= END ==============

解題僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言