國立基隆女中112學年度第1次教師 甄試
一、填充題:每題5分,小計60分
解答:$$\log \sqrt n={1\over 2}\log n=\sqrt{\log n} \Rightarrow {1\over 4}(\log n)^2=\log n \Rightarrow \log n({1\over 4}\log n-1)=0 \\ \Rightarrow \cases{n=1\\ \log n=4 \Rightarrow n=10^4} \Rightarrow 最大正整數n=\bbox[red, 2pt]{10000},但公布的答案是\bbox[blue,2pt]{999999}$$解答:$$\varphi = {1+\sqrt 5\over 2} 為 x^2-x-1=0的一根,另一根為\rho={1-\sqrt 5\over 2}\\ 令f(n)=\varphi^n+ \rho^n \Rightarrow f(1)=\varphi+\rho=1 \Rightarrow f(2)=\varphi^2+ \rho^2=f(1)^2-2 \varphi \rho=3\\ \Rightarrow f(3)=4 \Rightarrow \cdots \Rightarrow f(n)=f(n-1)+f(n-2)\\ \Rightarrow \langle f(n)\rangle =1,3,4,7,11,18,29,47,76,123,199,322,521,\dots\\\Rightarrow \langle f(n)\mod 10\rangle =1,3,4,7,1,8,9,7,6,3,9,2,1,3,4,\dots ,循環數=12\\ 因此2023=12\times 168+7 \Rightarrow f(2023)=\varphi^{2023}+\rho^{2023} 除以10的餘數=9 \\ 而-1\lt \rho^{2023}\lt 0,因此\varphi^{2023}除以10餘\bbox[red,2pt] 9$$
解答:
$$十球的三角垛:底層有6球(見上圖),中層有4球,頂層有1球;\\先求以\triangle ABC為其中一平面的正四面體ABCD的高,再加上球直徑即為所求;\\ \overline{AB}=4r= 4 \Rightarrow \overline{AG}= {4\over 3}\sqrt 3 ,其中G為\triangle ABC的重心;又\overline{AD}^2 =\overline{AG}^2+ \overline{DG}^2 \\\Rightarrow \overline{DG}={4\sqrt 6\over 3}, 再加上球直徑得\bbox[red, 2pt]{{4\sqrt 6\over 3}+2}$$
解答:$$\log_2(\log_8 x) +\log_8(\log_4 x)+ \log_4(\log_2 x)={2\over 3}\\ \Rightarrow\log_2({1\over 3}\log_ 2 x)+{1\over 3}\log_2 ({1\over 2}\log_2 x)+{1\over 2} \log_2(\log_2x)={2\over 3} \\ \Rightarrow -\log_2 3+ \log_2(\log_2 x)-{1\over3}+{1\over3}\log_2(\log_2 x)+{1\over 2}\log_2(\log_2 x)={2\over 3}\\ \Rightarrow {11\over 6}\log_2(\log_2 x)=\color{blue}{{2\over 3}+\log_2 3+{1\over 3}}\\ 欲求之\log_2(\log_4 x)+\log_4 (\log_8 x)+\log_8(\log_2 x)\\= \log_2({1\over 2}\log_2 x)+ {1\over 2}\log_2 ({1\over 3}\log_2 x)+{1\over 3}\log_2(\log_2 x)\\ =-1-{1\over 2}\log_2 3+{11\over 6}\log_2(\log_2 x)\\=-1-{1\over 2}\log_2 3+ \color{blue}{{2\over 3}+\log_2 3+{1\over 3}} ={1\over 2}\log_2 3 =\bbox[red,2pt]{\log_4 3}$$
解答:$$四個數中\cases{含0及10的有C^9_2=36組\\ 含1及9的有C^9_2=36組\\ 含2及8的有C^9_2=36組\\ 含3及7的有C^9_2=36組\\ 含4及6的有C^9_2=36組\\ 含\{(0,10), (1,9),(2,8),(3,7), (4,6)\}任2種的組合共C^5_2=10種} \\ \Rightarrow 欲求之機率={C^{11}_2- 36\times 5+10\over C^{11}_2} ={330-180+10\over 330} ={160\over 330}=\bbox[red,2pt]{16\over 33}$$
解答:$$假設T=\begin{bmatrix}a & b \\c & d \end{bmatrix}\Rightarrow \cases{T(A)=A'\\ T(B)=B'} \Rightarrow \cases{a=1,c=\sqrt 3\\ b=-\sqrt 3,d=1 } \Rightarrow T=\begin{bmatrix}1 & -\sqrt 3 \\\sqrt 3 & 1 \end{bmatrix} \\ 又 L:y=2x =(\tan \theta) x \Rightarrow 鏡射矩陣M=\begin{bmatrix}\cos 2\theta & \sin 2\theta \\\sin 2\theta & -\cos 2\theta \end{bmatrix} =\begin{bmatrix}-3/5 & 4/5 \\4/5 & 3/5 \end{bmatrix}\\ 取P(5,5) \Rightarrow P經L鏡射後為Q,即Q=MP=(1,7);而T(Q)=Q'(1-7\sqrt 3, \sqrt 3+7)\\而P'=T(P) = (5-5\sqrt 3,5\sqrt 3+5),令L':y=mx鏡射矩陣M'=\begin{bmatrix}\cos 2\alpha & \sin 2\alpha \\\sin 2\alpha & -\cos 2\alpha \end{bmatrix}\\ 依題意: Q'=M'(P') \Rightarrow \begin{bmatrix}\cos 2\alpha & \sin 2\alpha \\\sin 2\alpha & -\cos 2\alpha \end{bmatrix} \begin{bmatrix}5-5\sqrt 3 \\5\sqrt 3+5 \end{bmatrix}= \begin{bmatrix}1-7\sqrt 3 \\\sqrt 3+7 \end{bmatrix}\\ \Rightarrow \cases{\cos 2\alpha=(3-4\sqrt 3)/10\\ \sin 2\alpha= (-4-3\sqrt 3)/10} \Rightarrow \tan 2\alpha={-4-3\sqrt 3\over 3-4\sqrt 3}={48+25\sqrt 3\over 39} \\\Rightarrow m=\tan \alpha=\bbox[red,2pt]{-8-5\sqrt 3\over 11}$$
解答:$$轉移矩陣A=\begin{bmatrix}0 & 1/3 & 1/3 & 1/3 \\1/3 & 0 & 1/3 & 1/3\\ 1/3 & 1/3 & 0 &1/3\\ 1/3& 1/3& 1/3& 0 \end{bmatrix} \Rightarrow A^3=\left[\begin{matrix}\frac{2}{9} & \frac{7}{27} & \frac{7}{27} & \frac{7}{27} \\\frac{7}{27} & \frac{2}{9} & \frac{7}{27} & \frac{7}{27} \\\frac{7}{27} & \frac{7}{27} & \frac{2}{9} & \frac{7}{27} \\\frac{7}{27} & \frac{7}{27} & \frac{7}{27} & \frac{2}{9}\end{matrix}\right] \\ \Rightarrow A^3\begin{bmatrix}1 \\0 \\0\\0 \end{bmatrix} =\begin{bmatrix}2/9 \\7/27 \\7/27\\7/27 \end{bmatrix} \Rightarrow 三日後在乙城市的機率=\bbox[red,2pt]{7\over 27}$$
解答:
解答:$$四個數中\cases{含0及10的有C^9_2=36組\\ 含1及9的有C^9_2=36組\\ 含2及8的有C^9_2=36組\\ 含3及7的有C^9_2=36組\\ 含4及6的有C^9_2=36組\\ 含\{(0,10), (1,9),(2,8),(3,7), (4,6)\}任2種的組合共C^5_2=10種} \\ \Rightarrow 欲求之機率={C^{11}_2- 36\times 5+10\over C^{11}_2} ={330-180+10\over 330} ={160\over 330}=\bbox[red,2pt]{16\over 33}$$
解答:$$假設T=\begin{bmatrix}a & b \\c & d \end{bmatrix}\Rightarrow \cases{T(A)=A'\\ T(B)=B'} \Rightarrow \cases{a=1,c=\sqrt 3\\ b=-\sqrt 3,d=1 } \Rightarrow T=\begin{bmatrix}1 & -\sqrt 3 \\\sqrt 3 & 1 \end{bmatrix} \\ 又 L:y=2x =(\tan \theta) x \Rightarrow 鏡射矩陣M=\begin{bmatrix}\cos 2\theta & \sin 2\theta \\\sin 2\theta & -\cos 2\theta \end{bmatrix} =\begin{bmatrix}-3/5 & 4/5 \\4/5 & 3/5 \end{bmatrix}\\ 取P(5,5) \Rightarrow P經L鏡射後為Q,即Q=MP=(1,7);而T(Q)=Q'(1-7\sqrt 3, \sqrt 3+7)\\而P'=T(P) = (5-5\sqrt 3,5\sqrt 3+5),令L':y=mx鏡射矩陣M'=\begin{bmatrix}\cos 2\alpha & \sin 2\alpha \\\sin 2\alpha & -\cos 2\alpha \end{bmatrix}\\ 依題意: Q'=M'(P') \Rightarrow \begin{bmatrix}\cos 2\alpha & \sin 2\alpha \\\sin 2\alpha & -\cos 2\alpha \end{bmatrix} \begin{bmatrix}5-5\sqrt 3 \\5\sqrt 3+5 \end{bmatrix}= \begin{bmatrix}1-7\sqrt 3 \\\sqrt 3+7 \end{bmatrix}\\ \Rightarrow \cases{\cos 2\alpha=(3-4\sqrt 3)/10\\ \sin 2\alpha= (-4-3\sqrt 3)/10} \Rightarrow \tan 2\alpha={-4-3\sqrt 3\over 3-4\sqrt 3}={48+25\sqrt 3\over 39} \\\Rightarrow m=\tan \alpha=\bbox[red,2pt]{-8-5\sqrt 3\over 11}$$
解答:$$轉移矩陣A=\begin{bmatrix}0 & 1/3 & 1/3 & 1/3 \\1/3 & 0 & 1/3 & 1/3\\ 1/3 & 1/3 & 0 &1/3\\ 1/3& 1/3& 1/3& 0 \end{bmatrix} \Rightarrow A^3=\left[\begin{matrix}\frac{2}{9} & \frac{7}{27} & \frac{7}{27} & \frac{7}{27} \\\frac{7}{27} & \frac{2}{9} & \frac{7}{27} & \frac{7}{27} \\\frac{7}{27} & \frac{7}{27} & \frac{2}{9} & \frac{7}{27} \\\frac{7}{27} & \frac{7}{27} & \frac{7}{27} & \frac{2}{9}\end{matrix}\right] \\ \Rightarrow A^3\begin{bmatrix}1 \\0 \\0\\0 \end{bmatrix} =\begin{bmatrix}2/9 \\7/27 \\7/27\\7/27 \end{bmatrix} \Rightarrow 三日後在乙城市的機率=\bbox[red,2pt]{7\over 27}$$
解答:
$$\triangle ABQ: \cos \angle B={8^2+3^2-7^2\over 2\cdot 3\cdot 8}={1\over 2} \Rightarrow \angle B=60^\circ\\ 又\overline{BP}=\overline{BQ}=3 \Rightarrow \triangle PQB為一正\triangle \Rightarrow \overline{PQ}=3\\ \triangle OPR: \cos \angle OPR= \cos 120^\circ={1^2+\overline{PR}^2-4^2\over 2\cdot \overline{PR}} \Rightarrow -{1\over 2}={\overline{PR}^2-15\over 2\overline{PR}} \\ \Rightarrow \overline{PR}^2+ \overline{PR}- 15=0 \Rightarrow \overline{PR}=\bbox[red, 2pt]{-1+\sqrt{61}\over 2}$$
解答:$${d\over dx} \int_0^{x^2} f(t)\,dt = f(x^2)\cdot 2x = x^3+x \Rightarrow f(x^2)={1\over 2}(x^2+1) \Rightarrow f(x)={1\over 2}(x+1)\\ \Rightarrow \int_1^2 f(x)\,dx = \int_1^2 {1\over 2}(x+1)\,dx = \left.\left[ {1\over 4}(x+1)^2 \right] \right|_1^2 =\bbox[red, 2pt]{5\over 4}$$
解答:$$2\overline{PQ}+ 3\overline{PB}=\overline{PC} \Rightarrow \overline{PC} \gt \overline{PA} 且\overline{PC}\gt \overline{PB},故選\bbox[red,2pt]{(4)}$$
解答:$$\cases{P_1=L_1\cap L_2 \Rightarrow P_1(2s+2,4s-2,3s-1)\\ P_2=L_1\cap L_3 \Rightarrow P_2(4t+4,2t-1,3t+2)},s,t\in \mathbb R\\ 又P_1,P_2皆在過原點O的L_1上 \Rightarrow {\overrightarrow{OP_2}\over \overrightarrow{OP_1}}=k \Rightarrow \cases{4t+4=(2s+2)k\\ 2t-1=(4s-2)k\\ 3t+2=(3s-1)k} \\ \Rightarrow \cases{s=3\\ t=-2\\ k=-1/2} \Rightarrow P_1(8,10,8) \Rightarrow a:b:c=8:10:8 =\bbox[red,2pt]{4:5:4}$$
解答:$$\lim_{h\to 0} {\int_1^{1+h} \sqrt{5+\sqrt{3+t}}\,dt\over h } =\lim_{h\to 0} {{d
\over dh} \int_1^{1+h} \sqrt{5+\sqrt{3+t}}\,dt\over {d \over dh} h } =\lim_{h\to 0} { \sqrt{5+\sqrt{3+1+h}}\over 1} \\=\bbox[red, 2pt]{\sqrt 7}$$
解答:$$題目有\bbox[blue, 2pt]{疑義}$$
解答:$${d\over dx} \int_0^{x^2} f(t)\,dt = f(x^2)\cdot 2x = x^3+x \Rightarrow f(x^2)={1\over 2}(x^2+1) \Rightarrow f(x)={1\over 2}(x+1)\\ \Rightarrow \int_1^2 f(x)\,dx = \int_1^2 {1\over 2}(x+1)\,dx = \left.\left[ {1\over 4}(x+1)^2 \right] \right|_1^2 =\bbox[red, 2pt]{5\over 4}$$
解答:$$2\overline{PQ}+ 3\overline{PB}=\overline{PC} \Rightarrow \overline{PC} \gt \overline{PA} 且\overline{PC}\gt \overline{PB},故選\bbox[red,2pt]{(4)}$$
解答:$$\cases{P_1=L_1\cap L_2 \Rightarrow P_1(2s+2,4s-2,3s-1)\\ P_2=L_1\cap L_3 \Rightarrow P_2(4t+4,2t-1,3t+2)},s,t\in \mathbb R\\ 又P_1,P_2皆在過原點O的L_1上 \Rightarrow {\overrightarrow{OP_2}\over \overrightarrow{OP_1}}=k \Rightarrow \cases{4t+4=(2s+2)k\\ 2t-1=(4s-2)k\\ 3t+2=(3s-1)k} \\ \Rightarrow \cases{s=3\\ t=-2\\ k=-1/2} \Rightarrow P_1(8,10,8) \Rightarrow a:b:c=8:10:8 =\bbox[red,2pt]{4:5:4}$$
解答:$$\lim_{h\to 0} {\int_1^{1+h} \sqrt{5+\sqrt{3+t}}\,dt\over h } =\lim_{h\to 0} {{d
\over dh} \int_1^{1+h} \sqrt{5+\sqrt{3+t}}\,dt\over {d \over dh} h } =\lim_{h\to 0} { \sqrt{5+\sqrt{3+1+h}}\over 1} \\=\bbox[red, 2pt]{\sqrt 7}$$
二、計算題:每題10分,計20分
解答:$$泰勒展開式:e^x=1+x+{1\over 2}x^2+\cdots \Rightarrow e^x \gt 1+x,\;\forall x \gt 0\\ x={\pi\over e}-1 代入不等式\Rightarrow e^{\pi/e-1} \gt {\pi\over e} \Rightarrow {e^{\pi/e}\over e} \gt {\pi\over e} \Rightarrow e^{\pi/e}\gt \pi \\ \Rightarrow (e^{\pi/e})^e \gt \pi^e \Rightarrow \bbox[red, 2pt]{e^\pi \gt \pi^e}$$解答:$$題目有\bbox[blue, 2pt]{疑義}$$
三、證明題:每題10分,計20分
解答:$$\mathbf{(1)}\;\lim_{x\to a}f(x) =\lim_{x\to a}\left( {f(x)-f(a)\over x-a}\cdot (x-a)+ f(a)\right) \\=\lim_{x\to a}{f(x)-f(a)\over x-a} \cdot \lim_{x\to a}(x-a)+\lim_{x\to a} f(a) =f'(a)\cdot 0+f(a)=f(a)\\ \Rightarrow \lim_{x\to a}f(x) =f(a),\bbox[red,2pt]{故得證} \\\mathbf{(2)}\; 令g(x)=|x-1|,則\lim_{x\to 1^+}g(x) =\lim_{x\to 1^-}g(x)=0 \Rightarrow g(x)在x=1處連續\\ 但\lim_{x\to 1}{g(x)-g(1)\over x-1}=\lim_{x\to 1}{|x-1|\over x-1},而\cases{\lim_{x\to 1^+}g(x)=1\\ \lim_{x\to 1^-}g(x)=-1} \Rightarrow \lim_{x\to 1}g'(x)不存在$$$$題目\bbox[blue,2pt]{有誤}!!若A=-P,則\overrightarrow{OA}+ \overrightarrow{OP}=0滿足(\overrightarrow{OA} +\overrightarrow{OP})\cdot (\overrightarrow{OB} +\overrightarrow{OP}) =0 ,\\也就是B可以是雙曲線上任一點,\overline{PA} 不一定垂直\overline{PB}, \overline{AB}的最小值=0$$
================= END ==============
解題僅供參考,其他教甄試題及詳解
第一題題目沒說明清楚,若是問取高斯符號,那答案就是10^6-1了
回覆刪除這考卷感覺怪怪的......
刪除請教老師關於第二大題計算題第二題的疑義在何處呢?謝謝老師
回覆刪除