2023年7月30日 星期日

112年新竹中學教甄-數學詳解

112年新竹中學數學科代理教師甄選

一、填充題(共60分,每題6分)

解答滿nf(n)n=3:101f(3)=1n=4:1011,1101f(4)=2n=5:10101,11011f(5)=201011f(n)=f(n2)+f(n3),n6n678910111213141516f(n)34579121621283749f(16)=49
解答:(1)(2)(3)(4)(5)(6)(7)(8)(1)(6)(1)(8)14(2,3,6,7)10(4)(5)12924!=2492×24=2208
解答=+=0.001×0.99+0.999×0.02=0.001×0.99×0.990.001×0.99×0.99+0.999×0.02×0.02=363511
解答

COQPR=60QOR=120¯QRsinQOR=33sin120=6=2rr=3¯OR=¯OQ=3CORCOQ(SSS)COQ=COR=120cosCOQ=12=¯OC2+32722¯CO3¯OC=5¯CP=4COP=θ{sinθ=4/5cosθ=3/5{POR=120θPOQ=120+θPOR+POQ=1232(sin(120θ)+sin(120+θ))=923cosθ=27103OPR=1232sin120=943PQR=27103+943=99203
解答ω=cos(2π/7)+isin(2π/7)=e2πi/7ω6=e12πi/7=e2πi/7cos(2π/7)=(ω+ω6)/2cos(4π/7)=(ω2+ω5)/2,cos(6π/7)=(ω3+ω4)/2x3+ax2+bx+c=0{α=ω+ω62β=ω2+ω52γ=ω3+ω42{a=α+β+γb=αβ+βγ+γαc=αβγα+β+γ=12(ω+ω2++ω6)=12(1)=12a=12αβ+βγ+γα=142(ω+ω2++ω6)=12b=12αβγ=18(2+ω+ω2+s+ω6)=18c=18abc=132
解答z1,z2,z3,z4P(z)=0{z1+z2+z3+z4=4z1(z2+z3+z4)+z2(z3+z4)+z3z4=3z1z2z3+z2z3z4+z3z4z1+z1z2z4=2z1z2z3z4=1{f(z1)=4iˉz1f(z2)=4iˉz2f(z3)=4iˉz3f(z4)=4iˉz4Q(z)=0{B=(4i)2×3=48D=(4i)4×1=256B+D=25648=208
解答

¯BD=¯AC=2+1+3=6BDD():¯BD2=¯BD2+¯DD2=(¯BY+¯DX)2+¯XY262=(¯BY+¯DX)2+12¯BY+¯DX=35=ABC+ADC=12¯AC(¯BY+¯DX)=12635=335
解答L:y=tanθxP(a,b)LL:y=1tanθ(xa)+bP=LL=(a+btanθ1+tan2θ,atanθ+btan2θ1+tan2θ)=[11+tan2θtanθ1+tan2θtanθ1+tan2θtan2θ1+tan2θ][ab]A=[11+tan2θtanθ1+tan2θtanθ1+tan2θtan2θ1+tan2θ]A2=AA112=A=[11+tan2θtanθ1+tan2θtanθ1+tan2θtan2θ1+tan2θ]
解答
cosC=42+6228246=12C=60{B(0,0)C(4,0)A(1,33)¯ACQ¯BQ=23Q(3,3){L1=BQ:3y=3xL2=CP:x+3y=4P=L1L2=(2,23/3){AP=(1,73/3)AB=(1,33)AC=(3,33)(α,β)=(13,49)


解答:y=ax+b,(x,y)=(4,5),(6,5),(8,7),(10,9),(12,9)XYX2XY451620653630876456109100901291441084035360304{ˉx=40/5=8ˉy=35/5=7a=n(xy)(x)(y)nx2(x)2=5×30440×355×360402=35(ˉx,ˉy)y=35(x8)+7y=35x+115(a,b)=(35,115)
解答f(x)=anx2+an1xn1++a1x+a0pxqp,qpanqa0:f(x)pxqf(q/p)=0an(qp)n+an1(qp)n1++a1(qp)+a0=0anqn+an1pqn1++a1pn1q+a0pn=0{p(an1qn1++a1pn2q+a0pn1)=anqnpanqnq(anqn1+an1pqn2++a1pn1)=a0pnqa0pnp,q{panqa0
解答an=2an1+n=2(2an2+(n1))+n=22an2+2(n1)+n=22(2an3+(n2))+2(n1)+n=23an3+22(n2)+2(n1)+n=2n1a1+2n22+2n33++22(n2)+2(n1)+n=2n11+2n22+2n33++22(n2)+2(n1)+20n2an=2n+2n12+2n23++23(n2)+22(n1)+2n2anan=an=2n+2n1+2n2++22+2n=2n+1n2
解答(1)S1{:11:12S2{:2:21S3{:2:3P(S1S1)=P()+P()=58P(S1S2)=P()14P(S1S3)=P() 18P(S2S1)=12,P(S2S2)=12;P(S3S3)=14,P(S3S1)=34A=[5/81/23/41/41/201/801/4]A2[100]=[3964916213293238316764116532][100]=[100]=[3964932764]2(S2)=932(2)A=[216123111][0000380001][16161211541525110110110]A=[216123111][000000001][16161211541525110110110]=[353535310310310110110110]A[100]=[35310110]P(S2)=310
解答(1){LFJNLFJACF=CAJ=90ACFJABEJ{¯AC=¯FJ¯IE=¯AB=¯AC/2¯IE¯FJ=12=¯DI¯DJI¯DJ:¯AJ2+¯AD2=2(¯AI2+¯IJ2)100=2(25+¯IJ2)¯IJ=5(2)¯IJ=5¯DJ=10¯DJ2=¯AJ2+¯AD2JAD=90d(L,M)=A¯DJ=8×6÷10=245

=============== END ============

學校未公告答案,解題僅供參考,其他教甄試題及詳解

3 則留言:

  1. 第一題是2019AMC改題,https://www.youtube.com/watch?v=1XEV-SufWng&list=PLmRNZ9_6PAB25t4F3XbO7eJ_RTaMaFUHE&index=4

    回覆刪除
    回覆
    1. 謝謝告知,這份考卷還有其他的AMC試題!

      刪除