國立中山大學113學年度碩士班招生考試
科目名稱: 工程數學【離岸風電碩士班、海工系碩士班甲組、海工聯合碩士班】
解答:(a)y=xm⇒{y′=mxm−1y″=m(m−1)xm−2⇒x2y″−3xy′+4y=(m2−4m+4)xm=0⇒(m−2)2=0⇒m=2⇒yh=c1x2+c2x2lnxyp=Alnx+Bx+C⇒y′p=Ax+B⇒y″p=−Ax2⇒x2y″p−3xy′p+4yp=4Alnx+Bx−4A+4C=2x+4lnx⇒{A=1B=2C=1⇒yp=lnx+2x+1⇒y=yh+yp⇒y=c1x2+c2x2lnx+lnx+2x+1(b)y=∞∑n=0anxn⇒y′=∞∑n=0nanxn−1⇒y″=∞∑n=0n(n−1)anxn−2⇒{y(0)=a0=1y′(0)=a1=1⇒y″+4xy′+2y=∞∑n=0((n+2)(n+1)an+2+(4n+1)an)xn=0⇒an+2=−4n+1(n+2)(n+1)an,a0=a1=1,n=0,1,2,⋯解答:∫C→F⋅d→r=∬Scurl →F⋅→ndSL.H.S z=2⇒C:x2+y2=4⇒{x(t)=2costy(t)=2sintz(t)=2⇒{x′(t)=−2sintdty′(t)=2costdtz′(t)=0,0≤t≤2π→F=(3y,−xz,yz2)=(6sint,−4cost,8sint)⇒∫C→F⋅d→r=∫2π0(6sint,−4cost,8sint)(−2sint,2cost,0)dt=∫2π0(−12sin2t−8cos2t)dtSince ,the surface S lies below the curve C⇒∫C→F⋅d→r=∫2π0(12sin2t+8cos2t)dt=∫2π0(8+4sin2t)dt=∫2π0(8+2−2cos2t)dt=∫2π010dt=20πR.H.S→F=(3y,−xz,yz2)⇒curl →F=[→i→j→k∂∂x∂∂y∂∂z3y−xzyz2]=(x+z2,0,−z−3)Let →r=(x,y,z) and {x=ρcosθy=ρsinθz=ρ2/2⇒{→rρ=(cosθ,sinθ,ρ)→rθ=(−ρsinθ,ρcosθ,0)⇒→rρ×→rθ=(−ρ2cosθ,−ρ2sinθ,ρ)=(ρ2cosθ,ρ2sinθ,−ρ)⇒∬Scurl →F⋅→ndS=∫2π0∫20(ρcosθ+ρ44,0,−ρ22−3)⋅(ρ2cosθ,ρ2sinθ,−ρ)dρdθ=∫2π0∫20(ρ3cos2θ+14ρ6cosθ+12ρ3+3ρ)dρdθ=∫2π0(4cos2θ+12828cosθ+8)dθ=∫2π0(4cos2θ+8)dθ=∫2π0(2cos2θ+10)dθ=20πFinally, we have ∫C→F⋅d→r=20π=∬Scurl →F⋅→ndS
解答:(a)sin2t=12−12cos(2t)⇒L{sin2t}=L{12−12cos(2t)}=12s−12⋅ss2+4⇒L{sin2tt}=∫∞s(12u−u2(u2+4))du=[12lnu−14ln(u2+4)]|∞s=14[lnu2−ln(u2+4)]|∞s=14[lnu2u2+4]|∞s=14(ln1−lns2s2+4)=14lns2+4s2.QED(b)L{sin2tt}=f(s)=∫∞0sin2tte−stdt=14lns2+4s2⇒f(1)=∫∞0sin2tte−tdt=14ln1+41=14ln5
解答:(a)f(x)=f(−x)⇒f(x) is even ⇒bn=0a0=12π∫π/2−π/21dx=12an=1π∫π/2−π/2cos(nx)dx=2nπsinnπ2,n=1,2,…⇒f(x)=a0+∞∑n=1ancos(nx)⇒f(x)=12+∞∑n=12nπsinnπ2cos(nx)(b)f(x)=12+∞∑n=12nπsinnπ2cos(nx)=12+2π(cosx−13cos(3x)+15cos(5x)−17cos(7x)+⋯)⇒f(0)=1=12+2π(1−13+15−17+⋯)⇒1−13+15−17+⋯=π4
解答:ϕ(x,t)=X(x)T(t)⇒XT″=c2X″T⇒BC:{ϕx(0,t)=X′(0)T(t)=0ϕx(ℓ,t)=X′(ℓ)T(t)=0⇒{X′(0)=0X′(ℓ)=0XT″=c2X″T⇒T″c2T=X″X=λCase I: λ=0⇒X″=0⇒X=c1x+c2⇒X′(0)=X′(ℓ)=c1=0⇒X=c2Taking c2=1, we get X=1Case II: λ=ρ2>0⇒⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒X′=c1ρeρx−c2ρe−ρx{X′(0)=ρ(c1−c2)=0X′(ℓ)=c1ρeρℓ−c2ρe−ρℓ=0⇒c1=c2=0⇒X=0Cases III: λ=−ρ2<0⇒X″+ρ2X=0⇒X=c1cos(ρx)+c2sin(ρx)⇒X′=−c1ρsin(ρx)+c2ρcos(ρx)⇒X′(0)=c2ρ=0⇒c2=0⇒X′(ℓ)=−c1ρsin(ρℓ)=0⇒sin(ρℓ)=0⇒ρℓ=nπ⇒ρ=nπℓ⇒X=c1cos(nπxℓ)⇒Xn=cos(nπxℓ),n=1,2,…⇒T″=λc2T⇒T″+n2π2ℓ2c2T=0⇒Tn=c1cosncπℓt+c2sinncπℓt,n=1,2,…⇒ϕ(x,t)=a0+∞∑n=1(Ancosncπtℓ+Bnsinncπtℓ)cosnπxℓ⇒ϕ(x,0)=a0+∞∑n=1Ancosnπxℓ=e−x⇒a0=1ℓ∫ℓ0e−xdx=1ℓ(1−e−ℓ)⇒An=2ℓ∫ℓ0e−xcosnπxℓdx=2ℓ(1−e−ℓ(−1)nn2π2+ℓ2ϕt(x,0)=0⇒Bn=0⇒ϕ(x,t)=1ℓ(1−e−ℓ)+∞∑n=12ℓ(1−e−ℓ(−1)nn2π2+ℓ2cosncπtℓcosnπxℓ
解答:z4+1=0⇒z4=ei(π+2kπ)⇒z=ei(π+2kπ)4,k=0,1,2,3⇒z0=eiπ/4=√22+i√22,z1=√22−i√22∫∞−∞1x4+1dx=∮C1z4+1dz=2πi(14z3|z=z0+14z3|z=z1)=√2π2
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言