國立中山大學113學年度碩士班招生考試
科目名稱: 工程數學【離岸風電碩士班、海工系碩士班甲組、海工聯合碩士班】
解答:(a)y=xm⇒{y′=mxm−1y″=m(m−1)xm−2⇒x2y″−3xy′+4y=(m2−4m+4)xm=0⇒(m−2)2=0⇒m=2⇒yh=c1x2+c2x2lnxyp=Alnx+Bx+C⇒y′p=Ax+B⇒y″p=−Ax2⇒x2y″p−3xy′p+4yp=4Alnx+Bx−4A+4C=2x+4lnx⇒{A=1B=2C=1⇒yp=lnx+2x+1⇒y=yh+yp⇒y=c1x2+c2x2lnx+lnx+2x+1(b)y=∞∑n=0anxn⇒y′=∞∑n=0nanxn−1⇒y″=∞∑n=0n(n−1)anxn−2⇒{y(0)=a0=1y′(0)=a1=1⇒y″+4xy′+2y=∞∑n=0((n+2)(n+1)an+2+(4n+1)an)xn=0⇒an+2=−4n+1(n+2)(n+1)an,a0=a1=1,n=0,1,2,⋯解答:∫C→F⋅d→r=∬
解答:\textbf{(a)}\;\sin^2 t={1\over 2}-{1\over 2}\cos (2t) \Rightarrow L\{\sin^2 t\} =L\left\{{1\over 2}-{1\over 2}\cos (2t) \right\} ={1\over 2s}-{1\over 2}\cdot {s\over s^2+4} \\ \Rightarrow L\left\{{\sin^2 t \over t} \right\} =\int_s^\infty \left({1\over 2u}- {u\over 2(u^2+4)} \right)\,du =\left. \left[ {1\over 2}\ln u-{1\over 4} \ln(u^2+4)\right] \right|_s^\infty \\ ={1\over 4}\left. \left[ \ln u^2- \ln(u^2+4)\right] \right|_s^\infty ={1\over 4}\left. \left[ \ln {u^2\over u^2+4} \right] \right|_s^\infty ={1\over 4}\left( \ln 1-\ln {s^2\over s^2+4}\right) \\ ={1\over 4} \ln{s^2+4\over s^2}. \bbox[red, 2pt]{QED}\\ \textbf{(b)}\; L\left\{{\sin^2 t\over t} \right\} =f(s)=\int_0^\infty {\sin^2 t\over t} e^{-st}\,dt ={1\over 4}\ln {s^2+4\over s^2} \\\quad \Rightarrow f(1)= \int_0^\infty {\sin^2 t\over t} e^{-t}\,dt ={1\over 4}\ln {1+4\over 1} =\bbox[red, 2pt]{{1\over 4} \ln 5}
解答:\textbf{(a)}\; f(x)=f(-x) \Rightarrow f(x) \text{ is even } \Rightarrow b_n=0\\ a_0={1\over 2\pi} \int_{-\pi/2}^{\pi/2} 1\,dx={1\over 2}\\ a_n={1\over \pi} \int_{-\pi/2}^{\pi/2} \cos(n x)\,dx ={2\over n\pi} \sin{n\pi \over 2},n=1,2,\dots \\ \Rightarrow f(x)= a_0+ \sum_{n=1}^\infty a_n \cos(nx) \Rightarrow\bbox[red, 2pt]{ f(x)={1\over 2}+ \sum_{n=1 }^\infty {2\over n\pi} \sin{n\pi \over 2} \cos(nx)} \\ \textbf{(b)}\; f(x)= {1\over 2}+ \sum_{n=1 }^\infty {2\over n\pi} \sin{n\pi \over 2} \cos(nx) \\\qquad ={1\over 2}+ {2\over \pi}(\cos x- {1\over 3}\cos(3x)+{1\over 5}\cos (5x)-{1\over 7}\cos(7x)+ \cdots)\\ \Rightarrow f(0)=1={1\over 2} +{2\over \pi}(1-{1\over 3} +{1\over 5} -{1\over 7} + \cdots) \Rightarrow 1-{1\over 3} +{1\over 5} -{1\over 7} + \cdots=\bbox[red, 2pt]{\pi \over 4}
解答:\phi(x,t)=X(x)T(t) \Rightarrow XT''=c^2X''T \Rightarrow \text{BC:} \cases{\phi_x(0,t) = X'(0)T(t)=0\\ \phi_x(\ell,t)=X'(\ell)T(t)=0} \Rightarrow \cases{X'(0)=0\\ X'(\ell)=0} \\ XT''=c^2X''T \Rightarrow {T''\over c^2T}={X''\over X} =\lambda\\ \textbf{Case I: }\lambda=0 \Rightarrow X''=0 \Rightarrow X=c_1x+c_2 \Rightarrow X'(0)=X'(\ell)=c_1 =0 \Rightarrow X=c_2\\\qquad \text{Taking }c_2=1,\text { we get }X=1\\ \textbf{Case II: }\lambda=\rho^2 \gt 0 \Rightarrow \Rightarrow X''-\rho^2 X=0 \Rightarrow X=c_1e^{\rho x}+ c_2e^{-\rho x} \Rightarrow X'=c_1\rho e^{\rho x}-c_2\rho e^{-\rho x} \\ \qquad \cases{X'(0)=\rho(c_1-c_2)=0\\ X'(\ell)=c_1\rho e^{\rho \ell}-c_2 \rho e^{-\rho \ell} =0} \Rightarrow c_1=c_2=0 \Rightarrow X=0\\ \textbf{Cases III: }\lambda=-\rho^2 \lt 0 \Rightarrow X''+\rho^2 X=0 \Rightarrow X= c_1\cos(\rho x)+ c_2\sin(\rho x)\\\qquad \Rightarrow X'=-c_1\rho \sin(\rho x)+ c_2\rho \cos(\rho x) \Rightarrow X'(0)=c_2\rho =0 \Rightarrow c_2=0 \\\qquad \Rightarrow X'(\ell)= -c_1\rho \sin(\rho \ell)=0 \Rightarrow \sin(\rho \ell)=0 \Rightarrow \rho \ell = n\pi \Rightarrow \rho ={n\pi\over \ell}\\\qquad \Rightarrow X=c_1 \cos({n \pi x\over \ell}) \Rightarrow X_n=\cos({n \pi x\over \ell}),n=1,2,\dots\\ \qquad \Rightarrow T''=\lambda c^2 T \Rightarrow T''+{n^2\pi^2 \over \ell^2}c^2 T=0 \Rightarrow T_n =c_1 \cos{nc\pi \over \ell}t +c_2\sin{nc\pi \over \ell}t,n=1,2,\dots \\ \Rightarrow \phi(x,t)=a_0+ \sum_{n=1}^\infty (A_n \cos{nc \pi t\over \ell} +B_n \sin{nc \pi t\over \ell}) \cos{n\pi x\over \ell} \\ \Rightarrow \phi(x,0)= a_0+ \sum_{n=1}^\infty A_n \cos{n\pi x\over \ell} =e^{-x} \Rightarrow a_0= {1 \over \ell}\int_0^\ell e^{-x}\,dx ={1\over \ell}(1-e^{-\ell}) \\ \Rightarrow A_n = {2\over \ell} \int_0^\ell e^{-x} \cos{n\pi x \over \ell}\,dx ={2\ell (1-e^{-\ell}(-1)^n \over n^2\pi^2 +\ell^2}\\ \phi_t(x,0)=0 \Rightarrow B_n=0 \Rightarrow \bbox[red, 2pt]{\phi(x,t)={1\over \ell}(1-e^{-\ell}) + \sum_{n=1}^\infty {2\ell (1-e^{-\ell}(-1)^n \over n^2\pi^2 +\ell^2} \cos{nc\pi t\over \ell} \cos{n\pi x\over \ell}}
解答:z^4+1=0 \Rightarrow z^4=e^{i(\pi+2k\pi)} \Rightarrow z=e^{i(\pi +2k\pi) \over 4},k=0,1,2,3 \\ \Rightarrow z_0= e^{i\pi/4} ={\sqrt 2\over 2}+i{\sqrt 2\over 2},z_1={\sqrt 2\over 2}-i{\sqrt 2\over 2} \\ \int_{-\infty}^\infty {1\over x^4+1}\,dx = \oint_C {1\over z^4+1}\,dz = 2\pi i \left(\left. {1\over 4z^3}\right|_{z=z_0} +\left.{1\over 4z^3}\right|_{z=z_1} \right) =\bbox[red, 2pt]{\sqrt 2\pi \over 2}
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言