Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年4月14日 星期日

113年台北科大機械碩士甲-工程數學詳解

國立臺北科技大學113學年度碩士班招生考試

系所組別: 機械工程系機電整合碩士班甲組
第一節 工程數學

解答:1.{P(x,y)=2xyQ(x,y)=x2y2Py=2x=QxexactΦ(x,y)=2xydx=(x2y2)dyΦ=x2y+ϕ(y)=x2y13y3+ρ(x)Φ=x2y13y3+c1=02.xyy=y2xdy=(y2+y)dx(y2+y)dx+(x)dy=0{P(x,y)=y2+yQ(x,y)=x{Py=2y+1Qx=1PyQxNot exact(PyQx)P=(2y+2)y2+y=2y depentent on yu=2yuintegrating factor u(y)=1y2{uP=1+1/yuQ=x/y2(uP)y=1y2=(uQ)xexactΦ(x,y)=(1+1y)dx=xy2dyΦ=x+xy+ϕ(y)=xy+ρ(x)Φ=x+xy=c1y=xc1x
解答:1.y=xmy=mxm1y=m(m1)xm2x2y2xy4y=(m23m4)xm=0m23m4=(m4)(m+1)=0m=4,1y=c1x4+c2x12.y2y+y=0λ22λ+1=(λ1)2=0λ=1yh=c1ex+c2xexyp=Ax2exyp=2Axex+Ax2exyp=2Aex+4Axex+Ax2exyp2yp+yp=2Aex=2exA=1yp=x2exy=yh+ypy=c1ex+c2xex+x2ex
解答:1.F(s)=tcos3tts2.L{y}+3L{y}+2L{y}=2L{u(t1)}s2Y(s)+3sY(s)+2Y(s)=2essY(s)=2ess(s+1)(s+2)=es(1s2s+1+1s+2)y(t)=L1{Y(s)}=u(t1)(12e(t1)+e2(t1))y(t)=u(t1)(12et+1+e2(t1))
解答:1.A=[1018611]det
解答:  \textbf{1.}\; f(-t)=-f(t) \Rightarrow f\text{ is odd} \Rightarrow a_n=0 \\\quad b_n= {1\over 2} \left(\int_{-2}^0 -2k \sin{n\pi x\over 2}\,dx + \int_0^2 2k \sin{n\pi x\over 2}\,dx\right)\\\qquad ={k\over 2}\left( \left. \left[ {4 \over n\pi} \cos{n\pi x\over 2} \right] \right|_{-2}^0 + \left. \left[ -{4\over n\pi} \cos{n\pi x\over 2}\right] \right|_{0}^2\right) ={k\over 2}\cdot {8\over n\pi} (1-(-1)^n) ={4\over n\pi}(1-(-1)^n) \\ \Rightarrow \mathcal F(f(t))= \bbox[red, 2pt]{ \sum_{n=1}^\infty {4k\over n\pi}(1-(-1)^n) \sin{n\pi x\over 2}} \\  \textbf{2.}\; g(t)=e^{-|t|} \Rightarrow \hat g(\omega)=\int_{-\infty}^\infty g(t)e^{-i\omega t}\,dt = {2\over 1+\omega^2} \\ \quad h(t)=e^{-|t-1|} =g(t-1) = e^{-i\omega} \hat g(\omega)  ={2\over 1+\omega^2}e^{-i\omega} \\ \quad f(t)=2g(t)+h(t) \Rightarrow \hat f(\omega)= 2\hat g(\omega)+e^{-i\omega}\hat g(\omega) \Rightarrow \hat f(\omega)= \bbox[red, 2pt]{{4\over 1+\omega^2} + {2\over 1+\omega^2}e^{-i\omega}}
 ==================== END ======================
解題僅供參考,其他歷年試題及詳解

2 則留言:

  1. 勘誤一下,第五題的1,b_n應是 4k*(1-(-1)^n)/(n*pi) 少了k

    回覆刪除