國立臺北科技大學113學年度碩士班招生考試
系所組別: 機械工程系機電整合碩士班甲組
第一節 工程數學
解答:1.y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−2xy′−4y=(m2−3m−4)xm=0⇒m2−3m−4=(m−4)(m+1)=0⇒m=4,−1⇒y=c1x4+c2x−12.y″−2y′+y=0⇒λ2−2λ+1=(λ−1)2=0⇒λ=1⇒yh=c1ex+c2xexyp=Ax2ex⇒y′p=2Axex+Ax2ex⇒y″p=2Aex+4Axex+Ax2ex⇒y″p−2y′p+yp=2Aex=2ex⇒A=1⇒yp=x2ex⇒y=yh+yp⇒y=c1ex+c2xex+x2ex
解答:1.題目有誤F(s)=tcos3t變數是t不是s2.L{y″}+3L{y′}+2L{y}=2L{u(t−1)}⇒s2Y(s)+3sY(s)+2Y(s)=2e−ss⇒Y(s)=2e−ss(s+1)(s+2)=e−s(1s−2s+1+1s+2)⇒y(t)=L−1{Y(s)}=u(t−1)(1−2e−(t−1)+e−2(t−1))⇒y(t)=u(t−1)(1−2e−t+1+e−2(t−1))
解答:1.A=[10−186−11]⇒det
解答: \textbf{1.}\; f(-t)=-f(t) \Rightarrow f\text{ is odd} \Rightarrow a_n=0 \\\quad b_n= {1\over 2} \left(\int_{-2}^0 -2k \sin{n\pi x\over 2}\,dx + \int_0^2 2k \sin{n\pi x\over 2}\,dx\right)\\\qquad ={k\over 2}\left( \left. \left[ {4 \over n\pi} \cos{n\pi x\over 2} \right] \right|_{-2}^0 + \left. \left[ -{4\over n\pi} \cos{n\pi x\over 2}\right] \right|_{0}^2\right) ={k\over 2}\cdot {8\over n\pi} (1-(-1)^n) ={4\over n\pi}(1-(-1)^n) \\ \Rightarrow \mathcal F(f(t))= \bbox[red, 2pt]{ \sum_{n=1}^\infty {4k\over n\pi}(1-(-1)^n) \sin{n\pi x\over 2}} \\ \textbf{2.}\; g(t)=e^{-|t|} \Rightarrow \hat g(\omega)=\int_{-\infty}^\infty g(t)e^{-i\omega t}\,dt = {2\over 1+\omega^2} \\ \quad h(t)=e^{-|t-1|} =g(t-1) = e^{-i\omega} \hat g(\omega) ={2\over 1+\omega^2}e^{-i\omega} \\ \quad f(t)=2g(t)+h(t) \Rightarrow \hat f(\omega)= 2\hat g(\omega)+e^{-i\omega}\hat g(\omega) \Rightarrow \hat f(\omega)= \bbox[red, 2pt]{{4\over 1+\omega^2} + {2\over 1+\omega^2}e^{-i\omega}}
==================== END ======================
解題僅供參考,其他歷年試題及詳解
勘誤一下,第五題的1,b_n應是 4k*(1-(-1)^n)/(n*pi) 少了k
回覆刪除已修訂,謝謝!!
刪除