國立中山大學113學年度碩士班招生考試
科目名稱: 微積分【應用數學系】
解答:(a)limx→1x3−1√x−1=limx→1(x3−1)′(√x−1)′=limx→13x212√x=limx→16x5/2=6(b)limn→∞[4√2n2−12+4√2n2−22+⋯+4√2n2−n2]=limn→∞n∑k=14√2n2−k2=limn→∞n∑k=14n√2−(k/n)2=I=∫104√2−x2dxx=√2cosθ⇒dx=−√2sinθdθ⇒I=∫π/4π/2−4√2sinθ√2sinθdθ=4⋅π4=π解答:f(x,y,z)=√xy3z+cos(xy)+zlnx=x1/2y3/2z1/2+cos(xy)+zlnx⇒fx=12x−1/2y3/2z1/2−ysin(xy)+zx⇒fxy=∂∂yfx⇒fxy=34x−1/2y1/2z1/2−sin(xy)−xycos(xy)⇒fxyz=∂∂zfxy⇒fxyz=38x−1/2y1/2z−1/2
解答:(a)y=x−3⇒dy=dx⇒I=∫∞3(x−3)2e−xdx=∫∞0y2e−(y+3)dy{u=y2dv=e−(y+3)dy⇒{du=2ydyv=−e−(y+3)⇒I=[−y2e−(y+3)]|∞0+2∫∞0ye−(y+3)dy=0+2∫∞0ye−(y+3)dy=2[−ye−(y+3)−e−(y+3)]|∞0=2e−3(b)cosx=1−tan2(x/2)1+tan2(x/2)⇒I=∫π013−cos(x)dx=∫π013−1−tan2(x/2)1+tan2(x/2)dxu=tan(x/2)⇒x=2tan−1u⇒dx=21+u2du⇒I=∫∞013−1−u21+u2⋅21+u2du=∫∞011+2u2duu=v√2⇒du=√22dv⇒I=√22∫∞011+v2dv=√22[tan−1v]|∞0=√22⋅π2=√2π4
解答:\sqrt{1+x} =(1+x)^{1/2} =\sum_{k=0}^\infty {1/2 \choose k} x^k = \bbox[red, 2pt]{\sum_{k=0}^\infty {2k\choose k} {(-1)^{k+1}\over 2^{2k}(2k-1)}x^k }
解答:y'+3y=e^{2x} \Rightarrow 積分因子I(x)=e^{\int 3\,dx} =e^{3x} \Rightarrow I(x)y'+3yI(x)=e^{2x}I(x) \\ \Rightarrow e^{3x}y'+ 3e^{3x} y=e^{5x} \Rightarrow \left( e^{3x}y \right)'=e^{5x} \Rightarrow e^{3x} y={1\over 5}e^{5x}+c_1 \Rightarrow y={1\over 5}e^{2x}+ c_1e^{-3x} \\ \text{Initial value }y(0)=1 \Rightarrow 1={1\over 5}+c_1 \Rightarrow c_1={4\over 5} \Rightarrow \bbox[red, 2pt]{y={1\over 5}e^{2x}+ {4\over 5}e^{-3x}}
解答:f(x(r,\theta),y(r,\theta)),\text{ where }\cases{x(r,\theta) =r\cos \theta\\ y(r,\theta )= r\sin \theta} \Rightarrow \cases{f_r=f_xx_r+ f_yy_r =f_x\cos \theta+f_y\sin \theta \\ f_\theta=f_xx_\theta+ f_yy_\theta =-f_x r\sin \theta+ f_y r\cos \theta} \\ \Rightarrow f_{rr} = (f_x\cos \theta+f_y\sin \theta)_r = (f_{xx}x_r+ f_{xy} y_r) \cos \theta+ (f_{yx}x_r+ f_{yy}y_r) \sin \theta \\\qquad = (f_{xx}\cos \theta+ f_{xy}\sin \theta) \cos \theta+ (f_{yx}\cos \theta+ f_{yy}\sin \theta) \sin \theta\\\qquad = f_{xx} \cos^2\theta +2f_{xy}\cos \theta \sin \theta+f_{yy} \sin^2 \theta\\ \Rightarrow f_{\theta\theta}= (-f_x r\sin \theta+ f_y r\cos \theta)_\theta \\\qquad =(-f_{xx}x_\theta -f_{xy}y_\theta)r\sin \theta-f_xr\cos \theta+ (f_{yx}x_\theta+ f_{yy}y_\theta) r\cos \theta -f_yr \sin \theta \\\qquad =(f_{xx} r\sin \theta-f_{xy} r\cos \theta) r\sin \theta-f_xr\cos \theta+ (-f_{yx} r\sin \theta+ f_{yy} r\cos \theta) r\cos \theta-f_y r\sin \theta \\\qquad = f_{xx}r^2\sin^2 \theta-2f_{xy}r^2 \cos \theta\sin \theta+ f_{yy}r^2\cos^2 \theta-f_xr\cos \theta-f_y r\sin \theta \\ \Rightarrow f_{rr}+{1\over r^2}f_{\theta\theta }=f_{xx}(\cos^2\theta+ \sin^2 \theta)+ f_{yy}(\sin^2\theta+ \cos^2\theta)-{1\over r}(f_x \cos \theta+f_y \sin \theta)\\ \qquad = f_{xx}+f_{yy}+{1\over r}f_r \\ \Rightarrow f_{rr}+{1\over r^2}f_{\theta\theta}- {1\over r} f_r=f_{xx}+f_{yy}= 0 \Rightarrow f_{rr}+{1\over r^2}f_{\theta\theta}- {1\over r} f_r=0. \bbox[red, 2pt]{QED}
解答:\text{Given }\frac{\text{d}V}{\text{d}t} =120, V={4\over 3}\pi r^3 \Rightarrow \frac{\text{d}V}{\text{d}t}= \frac{\text{d}V}{\text{d}r} \frac{\text{d}r}{\text{d}t} =4\pi r^2 \frac{\text{d}r}{\text{d}t} \\ \Rightarrow 120 =4\pi \cdot 30^2\cdot \frac{\text{d}r}{\text{d}t} \Rightarrow \frac{\text{d}r}{\text{d}t}= \bbox[red, 2pt]{{1\over 30\pi} \text{cm/s}}
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言