Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2024年4月13日 星期六

113年臺北科大能源碩士班-工程數學詳解

國立臺北科技大學113學年度碩士班招生考試

系所組別: 能源與冷凍空調工程系碩士班甲、乙組
第一節 工程數學

解答:y=y(x1)2y+3y+3ydy=(x1)2dx(1+3y)dy=(x1)2dxy+3lny=13(x1)3+c1y3ey=c2e(x1)3/3y(3)=1e1=c2e8/3c2=e11/3y3ey=e((x1)311)/3
解答:y
解答:y=\sum_{n=0}^\infty a_n x^n \Rightarrow y''= \sum_{n=0}^\infty n(n-1)a_n x^{n-2} = \sum_{n=0}^\infty (n+2)(n+1) a_{n+2}x^n\\ \Rightarrow x^2y = \sum_{n=0}^\infty  a_nx^{n+2} =\sum_{n=0}^\infty  a_{n-2}x^{n} \;(a_k=0,k\lt 0)\\ \Rightarrow y''+x^2y= \sum_{n=0}^\infty \left( (n+2)(n+1)a_{n+2}+ a_{n-2}\right)x^n= 0 \Rightarrow (n+2)(n+1)a_{n+2}+ a_{n-2}=0\\ \cases{n=-2 \Rightarrow 0\cdot a_0=0\\ n=-1 \Rightarrow 0\cdot a_1=0 \\ n=0 \Rightarrow 2a_2=0\\ n=1 \Rightarrow 6a_3=0} \Rightarrow \cases{a_0\; \text{arbitrary} \\a_1\; \text{arbitrary} \\a_2=0\\ a_3=0} \text{ and } a_{n}=-{a_{n-4} \over n(n-1)}, n\ge 4\\ \Rightarrow y=a_0+ a_1x-\sum_{n=4}^\infty {a_{n-4} \over n(n-1)}x^n,a_2=a_3=0 \\ \Rightarrow \bbox[red, 2pt]{y=a_0\left( 1-{1\over 12}x^4+{1 \over 672}x^3+ \cdots \right) +a_1\left( x-{1\over 20}x^5+{1\over 1440}x^9+ \cdots \right)}
解答:L\{y'\}-4 L\{y\}=L\{1\} \Rightarrow sY(s)-1-4Y(s)={1\over s} \Rightarrow Y(s)={1\over s(s-4)}+ {1 \over s-4} \\ \Rightarrow y(t)=L^{-1} \{Y(s)\} =L^{-1} \left\{{1\over s(s-4)}+ {1 \over s-4} \right\}  ={5\over 4}L^{-1} \left\{{1\over s-4} \right\} -{1\over 4} L^{-1} \left\{{1\over s} \right\} \\={5\over 4}e^{4t}-{1\over 4} \Rightarrow \bbox[red, 2pt]{y= {5\over 4}e^{4t}-{1\over 4}}
解答: L^{-1} \left\{{4 \over s^2+4s+20} \right\}  = L^{-1} \left\{{4 \over (s+2)^2+4^2} \right\}  = \bbox[red, 2pt]{e^{-2t} \sin(4t) }
解答:f(t)=2t^2+ \int_0^t f(t-\tau) e^{-\tau}\,d \tau \Rightarrow L\{f(t)\}=L\{2t^2 \}+L\{f(t)\}L\{e^{-t}\}\\ \Rightarrow F(s)={4\over s^3}+F(s)\cdot {1\over s+1} \Rightarrow {s\over s+1}F(s)={4\over s^3} \Rightarrow F(s)={4(s+1) \over s^4} \\ \Rightarrow f(t)=L^{-1}\{F(s)\}= L^{-1}\left\{ {4(s+1) \over s^4} \right\} = L^{-1}\left\{ {4s \over s^4} +{4\over s^4}\right\} =4\cdot {t^2\over 2}+ 4\cdot {t^3\over 6} \\ \Rightarrow \bbox[red, 2pt]{f(t)=2t^2+{2\over 3}t^3}
 

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言