Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年4月16日 星期二

113年武陵高中教甄-數學詳解

桃園市立武陵高級中等學校 113 學年度第一學期第 1 次正式教師甄選(未完)

一、 填充題 (每小題 5 分; 共 75 分)

解答:limn(1n2+3n+1n2+6n+1n2+9n++1n2+3n2)=limn(1n1+3/n+1n1+6/n+1nn2+9/n++1nn2+3n/n)=limnnk=11n1+3kn=1011+3xdx=[233x+1]|10=4323=23
解答:y=f(x)=x3+ax2+1f(x)=3x2+2axP(α,f(α))OP:y=f(α)(xα)+f(α)f(α)(α)+f(α)=0(3α2+2aα)(α)+α3+aα2+1=2α3aα2+1=0g(x)=2x3+ax21g(x)=6x2+2ax=2x(3x+a)=0x=0,a/3g(0)g(a/3)<0a3261>0a>3
解答:

解答:{O(0,0)A(1,0)B(12,32)xOA+yOB=(x12y,32y)C(x12y,32y)C(x12y)2+34y2=1x2xy+y2=1(xy)2=1xyC¯ABx+y1,x,y0(xy)211xy1
解答:x2+ax+b=0a24b0,{α+β=aαβ=bα2+β2=(α+β)22αβ=a22b<11{a24b0a22b<11(a,b)=(2,1),(3,1),(3,2),(4,3),(4,4),=536
解答:{f(x+3)f(x)+3(1)f(x+1)f(x)+1(2)(1)f(x)f(x+3)3f(x+2)+13f(x+1)+1+13f(x)f(x+1)1(3)(2)f(x+1)1f(x)(4)(3) and (4)f(x)=f(x+1)1f(x)=f(x1)+1f(2024)=f(2023)+1=f(2022)+2==f(1)+2023=2+2023=2025


解答:10=52,=2x,x2+y2=r2x2=r2y2=(2x)2=2x2=2(r2y2)=5202(50y2)dy=[100y23y3]|520=500250032=100032
解答:n+12n12=1n+12+n1212ndn=1n2(n+12n12)a=99k=11k=299k=1(k+12k12)+99k=1dk=2(99+1212)+99k=1dk=(3982)+99k=1dk(201.414)+99k=1dk=18.586+99k=1dka=18:
解答:(1)P(33,1)Γ27a2+1b2=1Let {f(a,b)=a+bg(a,b)=27a2+1b21, then by Lagrange multiplier, we have{fa=λgafb=λgbg=0{1=λ(54a3)1=λ(2b3)54b3=2a3a=3bg(3b,b)=03b2+1b2=1b2=4b=2(b>0)a=3b=6a+b=6+2=8(2);Γ:x236+y24=1
解答:113k=1(2k311333k21132+4k1132)=21133113k=1k331132113k=1k2+4113113k=1k2×113=21133(1131142)2311321131142276+41131131142226=114211321142271132+228226=114(113)1132+2=57+2=55
解答:
解答:
{O(0,0)P(2,4)L=OP:y=2xLMPNMPQ=45OPM=135cosOPM=¯OP2+¯PM2¯OM22¯OP¯PMcosπ4=20+¯PM236225¯PM22=¯PM21645¯PM¯PM=2610|PM+PN|=2¯PM=5220=21325
解答:{L1:y=2L2:y=0C(a,b){M(a2,0)N(a+2,0)A(x,2)B(x+4,2)¯AC2=¯MC2(xa)2+(b2)2=4+b2x=a2bB(a2b+4,2)d+¯BC=f(b)=b+(42b)2+(b2)2f(b)=04b325b2+40b16=0(b4)(4b29b+4)=0b=4,b=9±178b=9+178b=9+178b=18+21716=17+14f(b=9+178)=b+b216b+20=9+178+11222381764=9+178+18(71717)=171
另解:
{L1:y=2L2:y=0C(x,y){M(x2,0)N(x+2,0)A(0,2)B(4,2)¯AC2=¯MC2x2+(y2)2=4+y2x2=4y,F(0,1),y=1¯BC+¯CD,(¯BC+¯CE1),¯CE=¯CF,C=¯BF,(¯BC+¯CE1)=¯BF1=171

解答:{z1=a+biz2=c+di{z1+2ˉz2=(a+2c)+(b2d)=iz1×z2=(acbd)+(ad+bc)i=3+i{a+2c=0(1)b2d=1(2)acbd=3(3)ad+bc=1(4){(1)(2){c=a/2d=(b+1)/2(4)ab+12ab2=1a=2c=1{a=2c=1(3)2bd=3bd=1(4)(2)(4)(2d1)d=1(2d+1)(d1)=0{d=1d=1/2{b=1b=2|z1|=a2+b2={22+12=522+(2)2=22|z1|=522

二、計算證明題: (每題 15 分;共 45 分)

解答:
解答:a,b>0(a+b)(ab)20(a2b2)(ab)0a3a2bb2a+b30a3+b3a2b+ab2{a3+b3a2b+ab2(1)b3+c3b2c+bc2(2)c3+a3c2a+ca2(3)(1)+(2)+(3)2(a3+b3+c3)a2b+ab2+b2c+bc2+c2a+ca22(a3+b3+c3)+a3+b3+c3a2b+ab2+b2c+bc2+c2a+ca2+a3+b3+c33(a3+b3+c3)(a+b+c)(a2+b2+c2)a3+b3+c3a2+b2+c213(a+b+c){a3+b3+c3a2+b2+c213(a+b+c)(4)b3+c3+d3b2+c2+d213(b+c+d)(5)c3+d3+a3c2+d2+a213(c+d+a)(6)d3+a3+b3d2+a2+b213(d+a+b)(7)(4)+(5)+(6)+(7)a3+b3+c3a2+b2+c2+b3+c3+d3b2+c2+d2+c3+d3+a3c2+d2+a2d3+a3+b3d2+a2+b2a+b+c+d.QED
解答:S(n)=nk=1ak,S(n+1)ran=r(S(n)S(n1))S(n)S(n+1)r+S(n1)21rS(n+1)S(n1)S2(n)4rS(n+1)S(n1)S(n+1)S(n)r4S(n)S(n1)S(n+1)S(n)(r4)n1S(2)S(1)r4<1,limnS(n+1)S(n)=0,r41r4r=4
 

沒有留言:

張貼留言