國立臺北科技大學113學年度碩士班招生考試
系所組別: 電機工程系碩士班丙組
第一節 工程數學
解答:4sin2(y)dx−sec2(x)dy=0⇒14sin2(y)dy=1sec2(x)dx⇒−14cot(y)=12x+14sin(2x)+c1⇒cot(y)=−2x−sin(2x)+c2y(π4)=1⇒cot(1)=−π2−1+c2⇒c2=cot(1)+1+π2⇒cot(y)=−2x−sin(2x)+cot(1)+1+π2⇒y=cot−1(−2x−sin(2x)+cot(1)+1+π2)
解答:(a)y″−4y′+3y=0⇒λ2−4λ+3=(λ−3)(λ−1)=0⇒λ=1,3⇒yh=c1ex+c2e3x(b){y1=exy2=e3x⇒W=|y1y2y′1y′2|=2e4x⇒yp=−ex∫e3x(x+ex+xex+e3x)2e4xdx+e3x∫ex(x+ex+xex+e3x)2e4xdx=49+13x−38ex−14e3x−34xex−14x2ex+12xe3x⇒y=yh+yp⇒y=c3ex+c4e3x+49+13x−34xex−14x2ex+12xe3x
解答:f(t)={0,t<23,2≤t<3−3,t≥3⇒f(t)=3(u(t−2)−u(t−3))−3u(t−3)=3u(t−2)−6u(t−3)⇒L{y″}+6L{y′}+10L{y}=L{3u(t−2)−6u(t−3)}⇒s2Y(s)+6sY(s)+10Y(s)=3e−2ss−6e−3ss⇒Y(s)=3e−2ss(s2+6s+10)−6e−3ss(s2+6s+10)⇒y(t)=L−1{Y(s)}=L−1{3e−2ss(s2+6s+10)}−L−1{6e−3ss(s2+6s+10)}⇒y(t)=u(t−2)(310−310e−3(t−2)(cos(t−2)+3sin(t−2))−u(t−3)(35−35e−3(t−3)(cos(t−3)+3sin(t−3))
解答:A=[−4100−4−600−4]⇒sI−A=[s000s000s]−[−4100−4−600−4]=[s+4−100s+4600s+4]⇒(sI−A)−1=[1s+41(s+4)2−6(s+4)301s+4−6(s+4)2001s+4]⇒L−1{(sI−A)−1}=[e−4tte−4t−3t2e−4t0e−4t−6te−4t00e−4t]
解答:(a)A=√22[1−1−1100]=[1/√2−1/√2−1/√21/√200]⇒AT=[1/√2−1/√20−1/√21/√20]⇒B=ATA=[1−1−11]⇒det(B−λI)=λ(λ−2)=0⇒eigenvalues: 0,2(b)C=AAT=[1−10−110000]⇒det(C−λI)=−λ2(λ−2)=0⇒λ=0,2λ1=0⇒(C−λ1I)v=0⇒[1−10−110000][x1x2x3]=0⇒x1=x2⇒v=x2(110)+x3(001),choose v1=(110),v2=(001)λ2=2⇒(C−λ2I)v=0⇒[−1−10−1−1000−2][x1x2x3]=0⇒{x1+x2=0x3=0⇒v=x2(−110),choose v3=(−110)⇒the expression of all eigenvectors of AAT={s(110)+t(001),k(−110),s,t,k∈R}
解答:(a)Let {→v1=(1,0,1)→v2=(2,1,0)→v3=(2,2,1), then by Gram-Schmidt process, we have→e1=→v1|→v1|=(1√2,0,1√2)→u2=→v2−(→v2⋅→e1)→e1=(2,1,0)−(1,0,1)=(1,1,−1)⇒→e2=→u2|→u2|=(1√3,1√3,−1√3)→u3=→v3−(→v3⋅→e1)→e1−(→v3⋅→e2)→e2=(−12,1,12)⇒→e3=→u3|→u3|=(−1√6,2√6,1√6)⇒ˆS={→e1,→e2,→e3}={(1√2,0,1√2),(1√3,1√3,−1√3),(−1√6,2√6,1√6)}(b)x=a→e1+b→e2+c→e3⇒[1√21√3−1√601√32√61√2−1√31√6][abc]=[2√20√2]≡My=x⇒y=[abc]=M−1x=[√220√22√33√33−√33−√66√63√66][2√20√2]=[3√63−√33]⇒x=3→e1+√63→e2−√33→e3
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第三題,sin(t-2)和sin(t-3)前的係數都是3,並非-3,麻煩了!
回覆刪除謝謝, 已修訂
刪除