國立臺北科技大學113學年度碩士班招生考試
系所組別: 車輛工程系碩士班
第一節 工程數學
解答:1.y′=−4xy⇒∫ydy=−∫4xdx⇒12y2=−2x2+c1⇒y=±√−4x2+c22.y(2)=3⇒3=√−16+c2⇒c2=25⇒y=√25−4x2
解答:1.y″+y=0⇒λ2+1=0⇒λ=±i⇒yh=c1cosx+c2sinx2.{y1=cosxy2=sinx⇒W=|cosxsinx−sinxcosx|=1. Applying variations of parameters,yp=−cosx∫sinx(cosx−sinx)dx+sinx∫cosx(cosx−sinx)dx=−cosx(−14cos(2x)−12x+14sin(2x))+sinx(14sin(2x)+12x+14cos(2x))=14(cosx−sinx)+12x(cosx+sinx)⇒yp=14(cosx−sinx)+12x(cosx+sinx)3.y=yh+yp⇒y=c3cosx+c4sinx+12x(cosx+sinx)
解答:1.L{f(t)}=L{cos(ωt+θ)}=L{cos(ωt)cosθ−sin(ωt)sinθ}=cosθL{cosωt}−sinθL{sin(ωt)}=cosθ⋅ss2+ω2−sinθ⋅ωs2+ω2=scosθ−ωsinθs2+ω22.F(s)=s+1s2+9=ss2+32+13⋅3s2+32⇒L−1{F(s)}=L−1{ss2+32}+13L−1{3s2+32}=cos(3t)+13sin(3t)

解答:1.[A∣I]=[−1121003−11010−134001]R2+3R1→R2,R3+R1→R3→[−112100027310022−101]R2/2→R2,R3/2→R3→[−112100017232120011−12012]R1−R2→R1,R3−R2→R3→[−10−32−12−12001723212000−52−2−1212]−(2/5)R3→R3→[−10−32−12−1200172321200014515−15]R1+(3/2)R3→R2,R2−(7/2)R3→R2→[−100710−15−310010−1310−157100014515−15]−R1→R1→[100−71015310010−1310−157100014515−15]⇒A−1=[−71015310−1310−157104515−15]2.A=[1−10−12−10−11]⇒det

解答:\mathcal F(e^{-ax}) = \int_0^\infty e^{-ax} e^{-j\omega x}dx =\int_0^\infty e^{-(a+j\omega) x} dx = \left. \left[ {-1\over a+j\omega} e^{-(a+j\omega)x }\right] \right|_0^\infty \\\qquad ={1\over a+j\omega} =\bbox[red, 2pt]{{a-j\omega \over a^2+\omega^2}}
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言