臺灣綜合大學系統113學年度學士班轉學生聯合招生考試
科目名稱:微積分C
解答:(a)limx→2|6x−17|−|6x−7|3x−6=limx→217−6x−(6x−7)3x−6=limx→224−12x3x−6=limx→2(−4)=−4(b)L=[cos(2x)]x−2⇒lnL=lncos(2x)x2⇒limx→0lnL=limx→0lncos(2x)x2=limx→0(lncos(2x))′(x2)′=limx→0−2sin(2x)cos(2x)2x=limx→0−sin(2x)xcos(2x)=limx→0(−sin(2x))′(xcos(2x))′=limx→0−2cos(2x)cos(2x)−2xsin(2x)=−2⇒limx→0L=e−2解答:{x(t)=t3+1y(t)=t4+t⇒{x′(t)=3t2y′(t)=4t3+1⇒y′=dydt=4t3+13t2⇒y′(0,0)=4t3+13t2|t=−1=−1
解答:y5+5xy+1=0⇒5y4y′+5y+5xy′=0⇒(y4+x)y′+y=0⇒y′=−yy4+x⇒y′(0,−1)=1⇒y″=−y′y4+x+y(4y3y′+1)(y4+x)2⇒y″(0,−1)=−1+3=2
解答:f(x)=x8e1−x2⇒f′(x)=8x7e1−x2−2x9e1−x2=(8x7−2x9)e1−x2=0⇒x7(8−2x2)=0⇒x=0,±2⇒{f(0)=0f(±2)=256e−3⇒ max(f(x))=256e−3
解答:I=∫30√6x−x2dx=∫30√9−(9−6x+x2)dx=∫30√9−(3−x)2dx取3cosu=3−x⇒3sinudu=dx⇒I=3∫π/20sinu√9−9cos2udu=9∫π/20sin2udu=92∫π/20(1−cos2u)du=92[u−12sin2u]|π/20=94π
解答:R面積=∫10(x2−x7)dx=524⇒R質心的x坐標ˉx=∫10(x3−x8)dx5/24=5/365/24=23⇒質心與x=3的距離=3−23=73⇒欲求之體積=524⋅2π⋅73=3536π
解答:an=n(x−3)n2n(n2+1)⇒limn→∞|an+1an|=limn→∞|(n+1)(x−3)n+12n+1((n+1)2+1)⋅2n(n2+1)n(x−3)n|=limn→∞|(n+1)(x−3)(n2+1)2n(n2+2n+2)|=|12(x−3)|<1⇒−2<x−3<2⇒1<x<5x=1⇒∞∑n=1an=∞∑n=1(−1)nnn2+1收斂(交錯級數審斂法)x=5⇒∞∑n=1an=∞∑n=1nn2+1發散(積分審斂法)因此收斂區間為[1,5)
解答:f(x,y,z)=x2+y2−4xy+z+1⇒∇f=(fx,fy,fz)=(2x−4y,2y−4x,1)⇒∇f=(2x−4y,2y−4x,1)=λ(1,1,2)⇒λ=12⇒{2x−4y=1/22y−4x=1/2⇒x=y=−14⇒(a,b,c)=(−14,−14,t),t∈R
解答:∬另解:\cases{u= x+y\\ v=x-y} \Rightarrow \left|{\partial (u,v)\over \partial(x,y)} \right| =\begin{Vmatrix}1& 1\\ 1& -1 \end{Vmatrix} =2 \Rightarrow \iint_D \cos(x+y)\,dA= {1\over 2}\int_{-\pi/6}^{\pi/6} \int_{-\pi/6}^{\pi/6} \cos u\,dudv \\={1\over 2}\int_{-\pi/6}^{\pi/6}1\,dv={1\over 2}\cdot {\pi\over 3}=\bbox[red, 2pt]{\pi\over 6}
解答:
散度定理: \iint_S \mathbf F\cdot dS =\iiint_E \text{div }\mathbf F\,dV\\ \mathbf F=(9x^2z,8\sin(x^3)+e^{2z},x^5y\ln(x^2+1)) \Rightarrow \text{div }\mathbf F=18xz \\ \Rightarrow \iint_S \mathbf F\cdot dS =\int_0^3\int_0^2 \int_0^{6-3z}18xz\, dxdzdy =81\int_0^3\int_0^2 (z^3-4z^2+4z)dzdy =81\int_0^3 {4\over 3}dy\\ =\bbox[red, 2pt]{324}
========================== END =========================
解題僅供參考,轉學考歷年試題及詳解
沒有留言:
張貼留言