Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2024年10月9日 星期三

113年台綜大轉學考-微積分C詳解

 臺灣綜合大學系統113學年度學士班轉學生聯合招生考試

科目名稱:微積分C

解答:(a)limx2|6x17||6x7|3x6=limx2176x(6x7)3x6=limx22412x3x6=limx2(4)=4(b)L=[cos(2x)]x2lnL=lncos(2x)x2limx0lnL=limx0lncos(2x)x2=limx0(lncos(2x))(x2)=limx02sin(2x)cos(2x)2x=limx0sin(2x)xcos(2x)=limx0(sin(2x))(xcos(2x))=limx02cos(2x)cos(2x)2xsin(2x)=2limx0L=e2
解答:{x(t)=t3+1y(t)=t4+t{x(t)=3t2y(t)=4t3+1y=dydt=4t3+13t2y(0,0)=4t3+13t2|t=1=1
解答:y5+5xy+1=05y4y+5y+5xy=0(y4+x)y+y=0y=yy4+xy(0,1)=1y=yy4+x+y(4y3y+1)(y4+x)2y(0,1)=1+3=2
解答:f(x)=x8e1x2f(x)=8x7e1x22x9e1x2=(8x72x9)e1x2=0x7(82x2)=0x=0,±2{f(0)=0f(±2)=256e3 max(f(x))=256e3
解答:I=306xx2dx=309(96x+x2)dx=309(3x)2dx3cosu=3x3sinudu=dxI=3π/20sinu99cos2udu=9π/20sin2udu=92π/20(1cos2u)du=92[u12sin2u]|π/20=94π
解答:R=10(x2x7)dx=524Rxˉx=10(x3x8)dx5/24=5/365/24=23x=3=323=73=5242π73=3536π
解答:an=n(x3)n2n(n2+1)limn|an+1an|=limn|(n+1)(x3)n+12n+1((n+1)2+1)2n(n2+1)n(x3)n|=limn|(n+1)(x3)(n2+1)2n(n2+2n+2)|=|12(x3)|<12<x3<21<x<5x=1n=1an=n=1(1)nnn2+1()x=5n=1an=n=1nn2+1()[1,5)
解答:f(x,y,z)=x2+y24xy+z+1f=(fx,fy,fz)=(2x4y,2y4x,1)f=(2x4y,2y4x,1)=λ(1,1,2)λ=12{2x4y=1/22y4x=1/2x=y=14(a,b,c)=(14,14,t),tR
解答:另解:\cases{u= x+y\\ v=x-y} \Rightarrow \left|{\partial (u,v)\over \partial(x,y)} \right| =\begin{Vmatrix}1& 1\\ 1& -1 \end{Vmatrix} =2 \Rightarrow \iint_D \cos(x+y)\,dA= {1\over 2}\int_{-\pi/6}^{\pi/6} \int_{-\pi/6}^{\pi/6} \cos u\,dudv \\={1\over 2}\int_{-\pi/6}^{\pi/6}1\,dv={1\over 2}\cdot {\pi\over 3}=\bbox[red, 2pt]{\pi\over 6}
解答:
散度定理: \iint_S \mathbf F\cdot dS =\iiint_E \text{div }\mathbf F\,dV\\ \mathbf F=(9x^2z,8\sin(x^3)+e^{2z},x^5y\ln(x^2+1)) \Rightarrow \text{div }\mathbf F=18xz \\ \Rightarrow \iint_S \mathbf F\cdot dS =\int_0^3\int_0^2 \int_0^{6-3z}18xz\, dxdzdy =81\int_0^3\int_0^2 (z^3-4z^2+4z)dzdy =81\int_0^3 {4\over 3}dy\\ =\bbox[red, 2pt]{324}

========================== END =========================

解題僅供參考,轉學考歷年試題及詳解

沒有留言:

張貼留言