臺灣綜合大學系統113學年度學士班轉學生聯合招生考試
科目名稱:線性代數
類組代碼:A07/C11
解答:⇒:x∈Null(T)⇒T(x)=0⇒x=0=(0,0,0) (since T is one-to-one)⇒Null(T) is spanned by (0,0,0)⇐:Null(T) is spanned by (0,0,0)⇒Null(T)=k(0,0,0)=(0,0,0) Let T(u)=T(v),u,v∈R3, then T(u)−T(v)=T(u−v)=0⇒u−v∈Null(T)⇒u−v=0⇒u=v⇒T is one-to-oneQED解答:{T(1)=2⋅0+∫x01dt=xT(x)=2⋅1+∫x0tdt=2+12x2T(x2)=2⋅(2x)+∫x0t2dt=4x+13x3⇒T=[02010401200013]
解答:(a) A=W1∩W2=[a00−a]⇒dim(W1∩W2)=1(b) dim(W1+W2)=dim W1+dim W2−dim(W1∩W2)=3+2−1=4
解答:(a) v∈Col AB⇒v=(AB)x=A(Bx)⇒v∈Col A⇒Col AB⊆ Col A⇒dim(Col AB)≤dim(Col A)⇒rank(AB)≤rank(A).QED(b) By (a), we have{rank(AP)≤rank(A)⋯(1)rank(A)=rank(APP−1)≤rank(AP)⋯(2)Then rank(AP)=rank A.QED
解答:A3=[1−234]⇒(A3)−1=B=[−423−1]⇒A3B=I⇒A(A2B)=I⇒A−1=A2B⇒A is invertibleQED.
解答:(a) A has eigenvalues 1, 2, and 3, then {Av1=v1Av2=2v2Av3=3v3, where v1,v2, and v3 are eigenvectorsav1+bv2=0⇒A(av1+bv2)=aA(v1)+bA(v2)=av1+2b2v2=0⇒b2v2=0⇒b2=0⇒av1=0⇒a=0⇒v1 and v2 are linearly independentBy the same way, we have v2 and v3 are linearly independent, and v1 and v3 are linearly independent.That is, v1,v2, and v3 are linearly independent. By the Diagonalization Theorem, A is 3x3 and has 3 linearly independent eigenvectors, then A is diagonalizable.QED(b) {2=2+0=1+1⇒ two partitions3=3+0=2+1=1+1+1⇒ three partitions⇒numbers of JC. forms =2×3=6⇒J1=[4000004000005000005000005],J2=[4100004000005000005000005],J3=[4000004000005100005000005]J4=[4000004000005100005100005],J5=[4100004000005100005000005],J6=[4100004000005100005100005]
解答:(a) a basis {1,x,x2}∈P2, by Gram-Schmidt process:⟨1,1⟩=∫1−11⋅1dx=2⇒||⟨1,1⟩||=√2⇒e1=1√2⟨x,e1⟩=∫1−1x√2dx=0⇒x−⟨x,e1⟩e1=x⇒e2=x√⟨x⋅x⟩=x√∫1−1x2dx=√32x{⟨x2,e1⟩=1√2∫1−1x2=√23⟨x2,e2⟩=√32∫1−1x3dx=0⇒x2−⟨x2,e1⟩e1−⟨x2,e2⟩e2=x2−13⇒e3=x2−13√⟨x2−13,x2−13⟩=34√10(x2−13)⇒an orthonormal basis: {e1,e2,e3}={√22,√62x,34√10x2−14√10}(b) f=a+bx+cx2∈P2⇒⟨h−f⟩=∫1−1(x3−cx2−bx−a)dx=12−b⇒||h−f||=√12−b≥0 Then, we can choose u=12x⇒||h−u||=0⇒||h−f||≥||h−u||
========================== END =========================
解題僅供參考,轉學考歷年試題及詳解
沒有留言:
張貼留言