2024年10月30日 星期三

113年台綜大轉學考-線性代數詳解

臺灣綜合大學系統113學年度學士班轉學生聯合招生考試

科目名稱:線性代數
類組代碼:A07/C11 

解答:⇒:xNull(T)T(x)=0x=0=(0,0,0) (since T is one-to-one)Null(T) is spanned by (0,0,0)⇐:Null(T) is spanned by (0,0,0)Null(T)=k(0,0,0)=(0,0,0) Let T(u)=T(v),u,vR3, then T(u)T(v)=T(uv)=0uvNull(T)uv=0u=vT is one-to-oneQED
解答:{T(1)=20+x01dt=xT(x)=21+x0tdt=2+12x2T(x2)=2(2x)+x0t2dt=4x+13x3T=[02010401200013]
解答:(a) A=W1W2=[a00a]dim(W1W2)=1(b) dim(W1+W2)=dim W1+dim W2dim(W1W2)=3+21=4
解答:(a) vCol ABv=(AB)x=A(Bx)vCol ACol AB Col Adim(Col AB)dim(Col A)rank(AB)rank(A).QED(b) By (a), we have{rank(AP)rank(A)(1)rank(A)=rank(APP1)rank(AP)(2)Then rank(AP)=rank A.QED
解答:A3=[1234](A3)1=B=[4231]A3B=IA(A2B)=IA1=A2BA is invertibleQED.
解答:(a) A has eigenvalues 1, 2, and 3, then {Av1=v1Av2=2v2Av3=3v3, where v1,v2, and v3 are eigenvectorsav1+bv2=0A(av1+bv2)=aA(v1)+bA(v2)=av1+2b2v2=0b2v2=0b2=0av1=0a=0v1 and v2 are linearly independentBy the same way, we have v2 and v3 are linearly independent, and v1 and v3 are linearly independent.That is, v1,v2, and v3 are linearly independent. By the Diagonalization Theorem, A is 3x3 and has 3 linearly independent eigenvectors, then A is diagonalizable.QED(b) {2=2+0=1+1 two partitions3=3+0=2+1=1+1+1 three partitionsnumbers of JC. forms =2×3=6J1=[4000004000005000005000005],J2=[4100004000005000005000005],J3=[4000004000005100005000005]J4=[4000004000005100005100005],J5=[4100004000005100005000005],J6=[4100004000005100005100005]
解答:(a) a basis {1,x,x2}P2, by Gram-Schmidt process:1,1=1111dx=2||1,1||=2e1=12x,e1=11x2dx=0xx,e1e1=xe2=xxx=x11x2dx=32x{x2,e1=1211x2=23x2,e2=3211x3dx=0x2x2,e1e1x2,e2e2=x213e3=x213x213,x213=3410(x213)an orthonormal basis: {e1,e2,e3}={22,62x,3410x21410}(b) f=a+bx+cx2P2hf=11(x3cx2bxa)dx=12b||hf||=12b0 Then, we can choose u=12x||hu||=0||hf||||hu||

========================== END =========================

解題僅供參考,轉學考歷年試題及詳解

沒有留言:

張貼留言