國立成功大學113學年度碩士班招生考試
系所:水利及海洋工程
科目:工程數學
解答:(1)∇g=(gx,gy,gz)⇒∇1g=(−gxg2,−gyg2,−gzg2)=−1g2∇g⇒∇(fg)=g∇f+f∇g⇒∇(f/g)=1g∇f+f∇1g=1g2⋅g∇f+f⋅(−1g2∇g)=1g2(g∇f−f∇g).QED.(2)div(fv)=∂∂x(fv1)+∂∂y(fv2)+∂∂z(fv3)=(f∂∂xv1+v1∂∂xf)+(f∂∂yv2+v2∂∂yf)+(f∂∂zv3+v3∂∂zf)=f(∂∂xv1+∂∂yv2+∂∂zv3)+(v1∂∂xf+v2∂∂yf+v3∂∂zf)=fdiv v+v⋅∇fQED解答:(1) A=[1−p441−p]⇒det(A)=(1−p)2−16=0⇒p=−3,5⇒rank(A)={1,p=5,−32,otherwise(2) AAT=I⇒[p−qqp][pq−qp]=[p2+q200p2+q2]=[1001]⇒p2+q2=1
解答:(1) y″+y=0⇒λ2+1=0⇒λ=±i⇒yh=c1cosx+c2sinxyp=Axcosx+Bxsinx⇒y′p=Acosx−Axsinx+Bsinx+Bxcosx⇒y″p=−2Asinx−Axcosx+2Bcosx−Bxsinx⇒y″p+yp=−2Asinx+2Bcosx=cosx⇒{A=0B=1/2⇒yp=12xsinx⇒y=yh+yp⇒y=c1cosx+c2sinx+12xsinx(2) y″+2y′+y=0⇒λ2+2λ+1=(λ+1)2=0⇒λ=−1⇒yh=c1e−x+c2xe−x{y1=e−xy2=xe−x⇒W=|y1y2y′1y′2|=e−xUsing variations of parameters,yp=−e−x∫xe−x2xcosxe−xdx+xe−x∫e−x2xcosxe−xdx=(x−1)sin+cosx⇒y=yh+yp⇒y=c1e−x+c2xe−x+(x−1)sinx+cosx
解答:(1) r(t)=[cost,sint]⇒r′(t)=[−sint,cost]⇒F=[y,−x]=[sint,−cost]⇒∫F⋅dr=∫2π0[sint,−cost]⋅[−sint,cost]dt=∫2π0−1dt=−2πBy Green's theorem,∫F⋅dr=∬
============================ END ======================
解答題僅供參考,碩士班試題及詳解
沒有留言:
張貼留言