Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2024年10月18日 星期五

113年政大轉學考-微積分(二)詳解

 國立政治大學113學年度學士班轉學生招生考試

考試科目:微積分(二)
系所別:應用數學系二年級

解答:limn(1nn+1+1nn+2+1nn+n)=limnnk=11nn+k=limnnk=11 n1+k/n=1011+xdx=211udu=2(21)
解答:a. u=sinxdu=cosxdxπ/20cosxsin(sinx)dx=10sinudu=1cos1b. {u=secxdv=sec2xdx{du=secxtanxdxv=tanxI=sec3xdx=tanxsecxsecxtan2xdx=tanxsecxsecx(sec21)xdx=tanxsecxI+secxdx2I=tanxsecx+secxdx=tanxsecx+ln|secx+tanx|I=12(tanxsecx+ln|secx+tanx|)π/40sec3xdx=[12(tanxsecx+ln|secx+tanx|)]|π/40=12(1+ln2)c. {u=lnxdv=dx{du=1xdxv=xlnxdx=xlnx1dx=xlnxx+c110lnxdx=[xlnxx]|10=1
解答:{u=sinn1xdv=sinxdx{du=(n1)cosxsinn2xdxv=cosxI=sinnxdx=cosxsinn1x+(n1)cos2xsinn2xdx=cosxsinn1x+(n1)(1sin2x)sinn2xdx=cosxsinn1x+(n1)sinn2xdx(n1)InI=cosxsinn1x+(n1)sinn2xdxI=1ncosxsinn1x+n1nsinn2xdx,QED.
解答:a. ππsin(mx)cos(nx)dx=12ππ(sin((m+n)x)+sin((mn)x))dx=12([1m+ncos((m+n)x)]|ππ+[1mncos((mn)x)]|ππ)=0+0=0,QED.b. Case I m=nππsinmxsinnxdx=ππsin2nxdx=12ππ(1cos2nx)dx=12([x12nsin2nx]|ππ)=122π=πCase II mnππsinmxsinnxdx=12ππ(cos(m+n)xcos(mn)x)dx=12([1m+nsin(m+n)x1mnsin(mn)x]|ππ)=120=0QED.
解答:{x(t)=5costcos5ty(t)=5sintsin5t{x(t)=5sint+5sin5ty(t)=5cost5cos5t length of the curve =π/20x(t)2+y(t)2dt=π/205050(costcos5t+sintsin5t)dt=π/205050cos4tdt=π/205050(2cos22t1)dt=π/20100100cos22tdt=π/20101cos22tdt=π/2010sin2tdt=[5cos2t]|π/20=10
解答:an=(3)nxnn+1limn|an+1an|=limn|(3)n+1xn+1n+2n+1(3)nxn|=3|x|<113<x<13x=13n=1an=n=1(1)nn+1 convergent (by alternating series test) x=13n=1an=n=11n+1111+xdxdivergentinterval of convergence: (13,13]
解答:x2+y2=2x(x1)2+y2=1D={(x,y)(x1)2+y21}V=
解答:I= \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 (x^2+y^2)\,dzdy dx =\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (x^2+y^2) (2-\sqrt{x^2+y^2}) \,dydx \\=\int_0^{2\pi} \int_0^2 r^2(2-r) r\,drd\theta =\int_0^{2\pi} \int_0^2 (2r^3-r^4)\,drd\theta = \int_0^{2\pi} {8\over 5}\,d\theta= \bbox[red, 2pt]{16\pi\over 5}

======================= END ======================

解題僅供參考,轉學考歷年試題及詳解

沒有留言:

張貼留言