國立政治大學113學年度學士班轉學生招生考試
考試科目:微積分(二)
系所別:應用數學系二年級
解答:limn→∞(1√n√n+1+1√n√n+2+⋯1√n√n+n)=limn→∞n∑k=11√n√n+k=limn→∞n∑k=11 n√1+k/n=∫101√1+xdx=∫211√udu=2(√2−1)解答:a. u=sinx⇒du=cosxdx⇒∫π/20cosxsin(sinx)dx=∫10sinudu=1−cos1b. {u=secxdv=sec2xdx⇒{du=secxtanxdxv=tanx⇒I=∫sec3xdx=tanxsecx−∫secxtan2xdx=tanxsecx−∫secx(sec2−1)xdx=tanxsecx−I+∫secxdx⇒2I=tanxsecx+∫secxdx=tanxsecx+ln|secx+tanx|⇒I=12(tanxsecx+ln|secx+tanx|)⇒∫π/40sec3xdx=[12(tanxsecx+ln|secx+tanx|)]|π/40=12(1+ln2)c. {u=lnxdv=dx⇒{du=1xdxv=x⇒∫lnxdx=xlnx−∫1dx=xlnx−x+c1⇒∫10lnxdx=[xlnx−x]|10=−1
解答:{u=sinn−1xdv=sinxdx⇒{du=(n−1)cosxsinn−2xdxv=−cosx⇒I=∫sinnxdx=−cosxsinn−1x+(n−1)∫cos2xsinn−2xdx=−cosxsinn−1x+(n−1)∫(1−sin2x)sinn−2xdx=−cosxsinn−1x+(n−1)∫sinn−2xdx−(n−1)I⇒nI=−cosxsinn−1x+(n−1)∫sinn−2xdx⇒I=−1ncosxsinn−1x+n−1n∫sinn−2xdx,QED.
解答:a. ∫π−πsin(mx)cos(nx)dx=12∫π−π(sin((m+n)x)+sin((m−n)x))dx=12([−1m+ncos((m+n)x)]|π−π+[1m−ncos((m−n)x)]|π−π)=0+0=0,QED.b. Case I m=n⇒∫π−πsinmxsinnxdx=∫π−πsin2nxdx=12∫π−π(1−cos2nx)dx=12([x−12nsin2nx]|π−π)=12⋅2π=πCase II m≠n⇒∫π−πsinmxsinnxdx=−12∫π−π(cos(m+n)x−cos(m−n)x)dx=−12([1m+nsin(m+n)x−1m−nsin(m−n)x]|π−π)=−12⋅0=0QED.
解答:{x(t)=5cost−cos5ty(t)=5sint−sin5t⇒{x′(t)=−5sint+5sin5ty′(t)=5cost−5cos5t⇒ length of the curve =∫π/20√x′(t)2+y′(t)2dt=∫π/20√50−50(costcos5t+sintsin5t)dt=∫π/20√50−50cos4tdt=∫π/20√50−50(2cos22t−1)dt=∫π/20√100−100cos22tdt=∫π/2010√1−cos22tdt=∫π/2010sin2tdt=[−5cos2t]|π/20=10
解答:an=(−3)nxn√n+1⇒limn→∞|an+1an|=limn→∞|(−3)n+1xn+1√n+2⋅√n+1(−3)nxn|=3|x|<1⇒−13<x<13x=13⇒∞∑n=1an=∞∑n=1(−1)n√n+1 convergent (by alternating series test) x=−13⇒∞∑n=1an=∞∑n=11√n+1⇒∫∞11√1+xdx→∞⇒divergent⇒interval of convergence: (−13,13]
解答:x2+y2=2x⇒(x−1)2+y2=1⇒D={(x,y)∣(x−1)2+y2≤1}⇒V=∬
解答:I= \int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^2 (x^2+y^2)\,dzdy dx =\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (x^2+y^2) (2-\sqrt{x^2+y^2}) \,dydx \\=\int_0^{2\pi} \int_0^2 r^2(2-r) r\,drd\theta =\int_0^{2\pi} \int_0^2 (2r^3-r^4)\,drd\theta = \int_0^{2\pi} {8\over 5}\,d\theta= \bbox[red, 2pt]{16\pi\over 5}
======================= END ======================
解題僅供參考,轉學考歷年試題及詳解
沒有留言:
張貼留言