Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年10月19日 星期六

113年政大碩士班-微積分詳解

 國立政治大學113學年度碩士班招生考試

考試科目:微積分
系所別:應用數學系

解答:A. u=cosθdu=sinθdθπ/20sin3θcos2θdθ=π/20sinθ(1cos2θ)cos2θdθ=01(1u2)u2du=10(u2u4)du=1315=215B. 101x2ysinydydx=10y0ysinydxdy=10ysinydy=[ycosy+siny]|10=sin1cos1C. E1x3dV=10y20z+111x3dxdzdy=10y20[12x2]|z+11dzdy=10y2012(11(z+1)2)dzdy=10[12(z+11+z)]|y20dy=1210(y2+11+y21)dy=12[13y3+tan1yy]|10=12(13+π41)=π813
解答:f(x)=x0x2sin(t2)dtf(x)=x2sin(x2)+x02xsin(t2)dt
解答:h(x)=(sinx)x=exlnsinxh(x)=(lnsinx+xcosxsinx)exlnsinx=(sinx)x(lnsinx+xcotx),QED.
解答:{u=lnxdv=dx/x{du=dx/xv=2xlnxxdx=2xlnx2xdx=2xlnx4x40lnxxdx=[2xlnx4x]|40=8(ln21)
解答:f(x,y)={x3yxy3x2+y2if (x,y)(0,0)0if (x,y)=(0,0)fx(x,y)={y(x4+4x2y2y4)(x2+y2)2if (x,y)(0,0)0if (x,y)=(0,0)fxy(0,0)=lim
解答:\cases{g(t)=f(tx,ty) \Rightarrow g'(t)=xf_x(tx,ty)+ yf_y(tx,ty) \\g(t)=t^nf(x,y) \Rightarrow g'(t)=nt^{n-1} f(x,y)} \\ \Rightarrow g'(1)= xf_x(x,y) +yf_y(x,y)=nf(x,y). \bbox[red, 2pt]{QED.}
解答:\lim_{x\to a}g(x)=c \Rightarrow \exists \delta_1: 0 < |x-a| < \delta_1 \implies |g(x)-c| < \frac{c}{2} \Rightarrow g(x)\gt {c\over 2}\\ \lim_{x\to a}f(x)=\infty \Rightarrow \exists \delta_2 > 0: 0 < |x-a| < \delta_2 \implies f(x) > \frac{2M}{c} \in \mathbb R\\ \text{Now we choose }\delta=\min\{\delta_1, \delta_2\} \Rightarrow 0\lt |x-a|\lt \delta \Rightarrow f(x)g(x) \gt {c\over 2}\cdot {2M\over c}=M \in \mathbb R \\ \Rightarrow \lim_{x\to a} f(x)g(x) =\infty, \bbox[red, 2pt]{QED}
解答:f(x)={x\over 1+x^2}-\tan^{-1}x \Rightarrow f'(x)=-{2x^2 \over (1+x^2)^2} \lt 0, \text{ for }x\gt 0 \\ \Rightarrow f(x) \text{ is strictly decreasing} \Rightarrow {x\over 1+x^2}-\tan^{-1}x \lt 0 \Rightarrow {x\over 1+x^2}\lt \tan^{-1}x, \text{ for }x\gt 0 \\ g(x)=x- \tan^{-1}x \Rightarrow g'(x)=1-{1\over 1+x^2} ={x^2\over 1+x^2} \gt 0, \text{ for }x\gt 0 \\ \Rightarrow g(x) \text{ is strictly increasing }\Rightarrow x-\tan^{-1}x \gt 0 \Rightarrow \tan^{-1}x \lt x, \text{ for }x\gt 0\\ \text{At last, we have }\cases{{x\over 1+x^2}\lt \tan^{-1}x\\ \tan^{-1}x \lt x} \Rightarrow {x\over 1+x^2}\lt \tan^{-1}x\lt x, \text{ for }x\gt 0. \bbox[red, 2pt]{QED.}
解答:\cos \theta =\sqrt{{1\over 2}(\cos 2\theta+1)} \Rightarrow \cos {\pi\over 4}={1\over 2}\sqrt 2 \Rightarrow \cos{\pi\over 8}=\sqrt{{1\over 2}\left( {1\over 2}\sqrt 2+1\right)}={1\over 2}\sqrt{2+\sqrt 2} \\ \Rightarrow \cos {\pi\over 16} =\sqrt{{1\over 2}\left(\sqrt{{1\over 2}\left( {1\over 2}\sqrt 2+1\right)} +1\right)} ={1\over 2}\sqrt{2+\sqrt{2+\sqrt 2}} \Rightarrow \cdots\\ \Rightarrow \cos{\pi \over 2^{n+1}} = \underbrace{\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{2+{\ldots}}}}}_\text{n times}=\frac{1}{2}a_{n} \Rightarrow a_n= 2\cos{\pi\over 2^{n+1}} \\ \Rightarrow \lim_{n\to \infty} a_n=2 \Rightarrow \lim_{n\to \infty} a_n\text{ exists and }\lim_{n\to \infty} a_n=2. \bbox[red, 2pt]{QED}


========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言