國立政治大學113學年度碩士班招生考試
考試科目:微積分
系所別:應用數學系
解答:A. u=cosθ⇒du=−sinθdθ⇒∫π/20sin3θcos2θdθ=∫π/20sinθ(1−cos2θ)cos2θdθ=∫01−(1−u2)u2du=∫10(u2−u4)du=13−15=215B. ∫10∫1x2√ysinydydx=∫10∫√y0√ysinydxdy=∫10ysinydy=[−ycosy+siny]|10=sin1−cos1C. ∭E1x3dV=∫10∫y20∫z+111x3dxdzdy=∫10∫y20[−12x−2]|z+11dzdy=∫10∫y2012(1−1(z+1)2)dzdy=∫10[12(z+11+z)]|y20dy=12∫10(y2+11+y2−1)dy=12[13y3+tan−1y−y]|10=12(13+π4−1)=π8−13解答:f(x)=∫x0x2sin(t2)dt⇒f′(x)=x2sin(x2)+∫x02xsin(t2)dt
解答:h(x)=(sinx)x=exlnsinx⇒h′(x)=(lnsinx+xcosxsinx)exlnsinx=(sinx)x(lnsinx+xcotx),QED.
解答:{u=lnxdv=dx/√x⇒{du=dx/xv=2√x⇒∫lnx√xdx=2√xlnx−∫2√xdx=2√xlnx−4√x⇒∫40lnx√xdx=[2√xlnx−4√x]|40=8(ln2−1)
解答:f(x,y)={x3y−xy3x2+y2if (x,y)≠(0,0)0if (x,y)=(0,0)⇒fx(x,y)={y(x4+4x2y2−y4)(x2+y2)2if (x,y)≠(0,0)0if (x,y)=(0,0)⇒fxy(0,0)=lim
解答:\cases{g(t)=f(tx,ty) \Rightarrow g'(t)=xf_x(tx,ty)+ yf_y(tx,ty) \\g(t)=t^nf(x,y) \Rightarrow g'(t)=nt^{n-1} f(x,y)} \\ \Rightarrow g'(1)= xf_x(x,y) +yf_y(x,y)=nf(x,y). \bbox[red, 2pt]{QED.}
解答:\lim_{x\to a}g(x)=c \Rightarrow \exists \delta_1: 0 < |x-a| < \delta_1 \implies |g(x)-c| < \frac{c}{2} \Rightarrow g(x)\gt {c\over 2}\\ \lim_{x\to a}f(x)=\infty \Rightarrow \exists \delta_2 > 0: 0 < |x-a| < \delta_2 \implies f(x) > \frac{2M}{c} \in \mathbb R\\ \text{Now we choose }\delta=\min\{\delta_1, \delta_2\} \Rightarrow 0\lt |x-a|\lt \delta \Rightarrow f(x)g(x) \gt {c\over 2}\cdot {2M\over c}=M \in \mathbb R \\ \Rightarrow \lim_{x\to a} f(x)g(x) =\infty, \bbox[red, 2pt]{QED}
解答:f(x)={x\over 1+x^2}-\tan^{-1}x \Rightarrow f'(x)=-{2x^2 \over (1+x^2)^2} \lt 0, \text{ for }x\gt 0 \\ \Rightarrow f(x) \text{ is strictly decreasing} \Rightarrow {x\over 1+x^2}-\tan^{-1}x \lt 0 \Rightarrow {x\over 1+x^2}\lt \tan^{-1}x, \text{ for }x\gt 0 \\ g(x)=x- \tan^{-1}x \Rightarrow g'(x)=1-{1\over 1+x^2} ={x^2\over 1+x^2} \gt 0, \text{ for }x\gt 0 \\ \Rightarrow g(x) \text{ is strictly increasing }\Rightarrow x-\tan^{-1}x \gt 0 \Rightarrow \tan^{-1}x \lt x, \text{ for }x\gt 0\\ \text{At last, we have }\cases{{x\over 1+x^2}\lt \tan^{-1}x\\ \tan^{-1}x \lt x} \Rightarrow {x\over 1+x^2}\lt \tan^{-1}x\lt x, \text{ for }x\gt 0. \bbox[red, 2pt]{QED.}
解答:\cos \theta =\sqrt{{1\over 2}(\cos 2\theta+1)} \Rightarrow \cos {\pi\over 4}={1\over 2}\sqrt 2 \Rightarrow \cos{\pi\over 8}=\sqrt{{1\over 2}\left( {1\over 2}\sqrt 2+1\right)}={1\over 2}\sqrt{2+\sqrt 2} \\ \Rightarrow \cos {\pi\over 16} =\sqrt{{1\over 2}\left(\sqrt{{1\over 2}\left( {1\over 2}\sqrt 2+1\right)} +1\right)} ={1\over 2}\sqrt{2+\sqrt{2+\sqrt 2}} \Rightarrow \cdots\\ \Rightarrow \cos{\pi \over 2^{n+1}} = \underbrace{\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{2+{\ldots}}}}}_\text{n times}=\frac{1}{2}a_{n} \Rightarrow a_n= 2\cos{\pi\over 2^{n+1}} \\ \Rightarrow \lim_{n\to \infty} a_n=2 \Rightarrow \lim_{n\to \infty} a_n\text{ exists and }\lim_{n\to \infty} a_n=2. \bbox[red, 2pt]{QED}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言