國立政治大學113學年度學士班轉學生招生考試
考試科目:微積分(一)
系所別:應用數學系二年級

解答:a.L=x√x=e√xlnx⇒lnL=√xlnx⇒limx→0+lnL=limx→0+lnx1√x=limx→0+(lnx)′(1√x)′=limx→0+1/x−x−3/2/2=limx→0+−2√x=0⇒=limx→0+L=e0=1b.limx→3(x∫x3sinttdtx−3)=limx→3(x∫x3sinttdt′)(x−3)′=limx→3(∫x3sinttdt+sinx)=sin3

解答:F(x)=f(xf(xf(x)))⇒F′(x)=f′(xf(xf(x)))⋅(f(xf(x))+xf′(xf(x))⋅(f(x)+xf′(x)))⇒F′(1)=f′(f(2))⋅f(2)+f′(2)(2+f′(1))=f′(3)⋅3+5(2+4)=18+30=48

解答:yesinx=xcosy⇒y′esinx+ycosxesiny=cosy−xy′siny⇒(esinx+xsiny)y′=cosy−ycosxesiny⇒y′=cosy−ycosxesinyesinx+xsiny⇒y′(0,0)=11=1⇒ tangent line: y=x

解答:Let h(x)=(g(b)−g(a))f(x)−(f(b)−f(a))g(x), then h′(x)=(g(b)−g(a))f′(x)−(f(b)−f(a))g(′x) and {h(a)=g(b)f(a)−f(b)g(a)h(b)=f(a)g(b)−g(a)f(b)⇒h(a)−h(b)=0. By Mean Value Theorem, there exists c∈(a,b) such that h(b)−h(a)=h′(c)(b−a)=0⇒h′(c)=(g(b)−g(a))f′(c)−(f(b)−f(a))g′(c)=0⇒f′(c)g′(c)=f(b)−f(a)g(b)−g(a),QED.

解答:a. {fx(0,0)=limh→0f(h,0)−f(0,0)h=limh→00−0h=0fy(0,0)=limh→0f(0,h)−f(0,0)h=limh→00−0h=0⇒fx(0,0)=fy(0,0)=0b. y=kx,k≠0⇒f(x,y)=f(x,kx)=kx2(k2+1)x2=kk2+1⇒lim(x,y)→(0,0)f(x,kx)=kk2+1≠0⇒f(x,y) is NOT continuous at (0,0)⇒f(x,y) is continuous, for (x,y)≠(0,0)
解答:f(x,y)=x2+y2+4x−4y=(x+2)2+(y−2)2−8≥−8⇒ absolute minimum =f(−2,2)=−8{f(x,y)=x2+y2+4x−4yg(x,y)=x2+y2−9⇒{fx=λgxfy=λgyg=0⇒{2x+4=2xλ2y−4=2yλ⇒x+2y−2=xy⇒x=−y⇒g(x,−x)=2x2=9⇒x2=92⇒{x=3/√2⇒y=−3√2x=−3√2⇒y=3√2⇒{f(3/√2,−3/√2)=9+12√2f(−3/√2,3/√2)=9−12√2>−8⇒{ absolute minimum =−8 absolute maximum =9+12√2
======================= END ======================
解題僅供參考,轉學考歷年試題及詳解
沒有留言:
張貼留言