2024年10月17日 星期四

113年政大轉學考-微積分(一)詳解

國立政治大學113學年度學士班轉學生招生考試

考試科目:微積分(一)
系所別:應用數學系二年級


解答:a.L=xx=exlnxlnL=xlnxlimx0+lnL=limx0+lnx1x=limx0+(lnx)(1x)=limx0+1/xx3/2/2=limx0+2x=0⇒=limx0+L=e0=1b.limx3(xx3sinttdtx3)=limx3(xx3sinttdt)(x3)=limx3(x3sinttdt+sinx)=sin3

解答:F(x)=f(xf(xf(x)))F(x)=f(xf(xf(x)))(f(xf(x))+xf(xf(x))(f(x)+xf(x)))F(1)=f(f(2))f(2)+f(2)(2+f(1))=f(3)3+5(2+4)=18+30=48

解答:yesinx=xcosyyesinx+ycosxesiny=cosyxysiny(esinx+xsiny)y=cosyycosxesinyy=cosyycosxesinyesinx+xsinyy(0,0)=11=1 tangent line: y=x


解答:a. α,β(a,b), where α<β, there exists c[α,β] such thatf(β)f(α)=f(c)(βα)=0f(β)=f(α)f(x) is constant, for x(a,b).QED.b. sin(tan1x+cot1x)=sin(tan1x)cos(cot1x)+sin(cot1x)cos(tan1x)=xx2+1xx2+1+1x2+11x2+1=x2+1x2+1=1=sin(π2)tan1x+cot1x=π2.QED.


解答:Let h(x)=(g(b)g(a))f(x)(f(b)f(a))g(x), then h(x)=(g(b)g(a))f(x)(f(b)f(a))g(x) and {h(a)=g(b)f(a)f(b)g(a)h(b)=f(a)g(b)g(a)f(b)h(a)h(b)=0. By Mean Value Theorem, there exists c(a,b) such that h(b)h(a)=h(c)(ba)=0h(c)=(g(b)g(a))f(c)(f(b)f(a))g(c)=0f(c)g(c)=f(b)f(a)g(b)g(a),QED.

 解答:a. {fx(0,0)=limh0f(h,0)f(0,0)h=limh000h=0fy(0,0)=limh0f(0,h)f(0,0)h=limh000h=0fx(0,0)=fy(0,0)=0b. y=kx,k0f(x,y)=f(x,kx)=kx2(k2+1)x2=kk2+1lim(x,y)(0,0)f(x,kx)=kk2+10f(x,y) is NOT continuous at (0,0)f(x,y) is continuous, for (x,y)(0,0)

解答:f(x,y)=x2+y2+4x4y=(x+2)2+(y2)288 absolute minimum =f(2,2)=8{f(x,y)=x2+y2+4x4yg(x,y)=x2+y29{fx=λgxfy=λgyg=0{2x+4=2xλ2y4=2yλx+2y2=xyx=yg(x,x)=2x2=9x2=92{x=3/2y=32x=32y=32{f(3/2,3/2)=9+122f(3/2,3/2)=9122>8{ absolute minimum =8 absolute maximum =9+122


======================= END ======================

解題僅供參考,轉學考歷年試題及詳解

沒有留言:

張貼留言