國立嘉義大學113學年度應用數學系碩士班(甲組)招生考試
科目: 微積分 (每題 10 分,共 100 分)
解答:∫x2+1(x−1)(x−2)2dx=∫(2x−1−1x−2+5(x−2)2)dx=2ln(x−1)−ln(x−2)−5x−2+c1解答:L=log2√(x2+1)(x3+3)x4+5=12ln(x2+1)(x3+3)x4+5ln2=12ln2(ln(x2+1)+ln(x3+3)−ln(x4+5))⇒ddxL=12ln2(2xx2+1+3x2x3+3−4x3x4+5)
解答:limx→0√1+2x−3√1−3xx+x2=limx→0(√1+2x−3√1−3x)′(x+x2)′=limx→01√1+2x+1(1−3x)2/31+2x=2
解答:limy→0cosy−1y=limy→0(cosy−1)′(y)′=limy→0−siny1=0
解答:⌊x2⌋={00≤x<111≤x<√22√2≤x<√33√3≤x<2⇒∫20⌊x2⌋dx=1⋅(√2−1)+2(√3−√2)+3(2−√3)=5−√2−√3⌊x⌋={00≤x<111≤x<2⇒∫20⌊x⌋2dx=1⋅(2−1)=1∫20(⌊x2⌋−⌊x⌋2)dx=5−√2−√3−1=4−√2−√3
解答:L=xx=exlnx⇒lnL=xlnx=lnx1/x⇒limx→0+lnL=limx→0+lnx1/x=limx→0+(lnx)′(1/x)′=limx→0+1/x−1/x2=0⇒limx→0+L=e0=1
解答:f(x)=tan−1x=∫11+x2dx=∫∞∑n=0(−x2)ndx=∫∞∑n=0(−1)nx2ndx=∞∑n=0(−1)n2n+1x2n+1
解答:r=1+cosθ⇒r′=−sinθ⇒ arc length =∫2π0√(1+cosθ)2+(−sinθ)2dθ=∫2π0√2+2cosθdθ=∫2π0√2+2(2cos2(θ/2)−1)dθ=∫2π0√4cos2(θ/2)dθ=∫2π0|2cosθ2|dθ=4∫π0cosθ2dθ=4[2sinθ2]|π0=8
解答:limh→0+f(1+h)−f(1)h=limh→0+eh−1h=1limh→0−f(1+h)−f(1)h=limh→0+e−h−1h=−1⇒f is NOT differentiable at x=1
解答:y=f(x)=√x+√x+√x⇒y2−x=√x+√x⇒(y2−x)′=(√x+√x)′⇒2yy′−1=1+12√x2√x+√x⇒f′(x)=y′=1+12√x2√x+√x+12√x+√x+√x
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言