103年法務部調查局調查人員考試
考 試 別:調查人員
等 別:三等考試
類 科 組:電子科學組
科 目:工程數學
解答:$$a_0={1\over 4}\int_{-2}^2 x^2\;dx ={4\over 3}\\ a_n= {1\over 2}\int_{-2}^2 x^2 \cos{n\pi x\over 2}\;dx ={1\over 2}\left.\left[{2\over n^3\pi^3} (n^2\pi^2 x^2)\sin{n \pi x\over 2} +{8x\over n^2\pi^2} \cos{n\pi x\over 2}\right] \right|_{-2}^2 ={16\over n^2\pi^2}(-1)^n\\ b_n={1\over 2} \int_{-2}^2 x^2\sin {n\pi x\over 2}dx =0 (\because x^2\sin {n\pi x\over 2}奇函數)\\ 因此\bbox[red,2pt]{f(x)={4\over 3}+ \sum_{n=1}^\infty {16\over n^2\pi^2}(-1)^n\cos {n\pi x\over 2}}$$解答:$$依\text{d’Alembert’s solution},u_{tt}=c^2u_{xx}的通解為u(x,t)= F(x+ct) +G(x-ct)\\依題意u(x,0)=f(x) \Rightarrow F(x)+G(x)=f(x) \cdots(1)\\又u_t(x,0)=g(x) \Rightarrow cF'(x )-cG'(x )=g(x) \\ \Rightarrow \int_{x_0}^x g(s)\;ds = c(F(x)-G(x))-c(F(x_0)-G(x_0))\\ \Rightarrow F(x)-G(x)={1\over c}\int_{x_0}^x g(s)\;ds+F(x_0)-G(x_0)\cdots(2)\\ 由(1)及(2)可求得\cases{F(x)={1\over 2}\left(f(x)+ {1\over c}\int_{x_0}^x g(s)\;ds+F(x_0)-G(x_0)\right) \\ G(x)={1\over 2}\left(f(x)- {1\over c}\int_{x_0}^x g(s)\;ds-F(x_0)+G(x_0)\right)} \\ \Rightarrow \cases{F(x+ct) ={1\over 2}\left(f(x+ct)+ {1\over c}\int_{x_0}^{x+ct} g(s)\;ds+F(x_0)-G(x_0)\right) \\ G(x-ct)={1\over 2}\left(f(x-ct)- {1\over c}\int_{x_0}^{x-ct} g(s)\;ds-F(x_0)+G(x_0)\right)} \\ \Rightarrow F(x+ct)+G(x-ct)= {1\over 2}(f(x+ct)+f(x-ct)) +{1\over 2c}\left( \int_{x-ct}^{x_0}g(s)\;ds +\int_{x_0}^{x+ct} g(s)\;ds\right) \\\qquad\qquad ={1\over 2}(f(x+ct)+f(x-ct)) +{1\over 2c}\int_{x-ct}^{x+ct} g(s)\;ds\\ \Rightarrow \bbox[red,2pt]{u(x,t)={1\over 2}(f(x+ct)+f(x-ct)) +{1\over 2c}\int_{x-ct}^{x+ct}g(s)\;ds}$$
解答:$$y''+{c\over m }y'+{k\over m}y=0 \Rightarrow 特徵方程式\lambda^2+{c\over m}\lambda +{k\over m}=0 \Rightarrow \lambda ={-c/m \pm \sqrt{c^2/m^2-4k/m}\over 2}\\ \text{Cases I: }{c^2\over m^2}-{4k\over m} \gt 0 \Rightarrow c^2-4km \gt 0 \Rightarrow y(t)=c_1e^{\lambda_1 t} +c_2e^{\lambda_2 t},此時稱為過阻尼(\text{overdamping})\\\text{Cases II: }{c^2\over m^2}-{4k\over m} = 0 \Rightarrow c^2=4km\Rightarrow y(t)=c_1e^{\lambda t}+c_2te^{\lambda t},此時稱為臨界阻尼(\text{critical damping}) \\\text{Cases III: }{c^2\over m^2} \lt {4k\over m} \Rightarrow c^2\lt 4km\Rightarrow y(t)=e^{-2m/c}(c_1\cos(\rho t)+c_2\sin(\rho t)), \rho ={\sqrt{4km-c^2}\over 2m}\\\qquad,此時稱為低阻尼(\text{underdamping})$$
解答:$$x_1^2+ 24x_1x_2-6x_2^2=5 \Rightarrow [x_1,x_2]\begin{bmatrix} 1 & 12\\ 12 & -6\end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} =5 \equiv \mathbb{x}^tA\mathbb{x}\\ \Rightarrow A=\begin{bmatrix} 1 & 12\\ 12 & -6\end{bmatrix} \Rightarrow \det(A-\lambda I)=\begin{vmatrix} 1-\lambda & 12\\ 12 & -6-\lambda\end{vmatrix} =(\lambda -10)(\lambda+15)=0 \\ \Rightarrow 矩陣A的特徵值為一正一負,該二次式為\bbox[red,2pt]{雙曲線}\\ 接著將A對角化,即A=\begin{bmatrix} 4/5 & 3/5\\ 3/5 & -4/5 \end{bmatrix}\begin{bmatrix} 10 & 0\\ 0 & -15\end{bmatrix} \begin{bmatrix} 4/5 & 3/5\\ 3/5 & -4/5 \end{bmatrix} \equiv PDP^t \\ 則原式\mathbb{x}^tA\mathbb{x}= \mathbb{x}^tPDP^t \mathbb{x} =(\mathbb{x}^tP)D (\mathbb{x}^tP)^t\\取y^t=\mathbb{x}^tP \Rightarrow [y_1,y_2]=[x_1,x_2]\begin{bmatrix} 4/5 & 3/5\\ 3/5 & -4/5 \end{bmatrix} =[{4\over 5}x_1+{3\over 5}x_2,{3\over 5}x_1-{4\over 5}x_2]\\ \Rightarrow \bbox[red,2pt]{座標轉換式T((x_1,x_2)) =({4\over 5}x_1 +{3\over 5}x_2,{3\over 5}x_1-{4\over 5}x_2)}$$
解答:
(一)$$累積分佈函數F(x)=f(X\le x) =\int_{-1}^x f(x)\;dx =\int_{-1}^x {3\over 4}(1-x^2)\;dx = -{1\over 4}x^3+{3\over 4}x+{1\over 2} \\ \Rightarrow \bbox[red,2pt]{F(x)=\begin{cases}-{1\over 4}x^3+{3\over 4}x+{1\over 2}, & -1\le x\le 1\\ 0, &其它 \end{cases}};$$(二)$$P(-1/2\le X\le 1/2)= F(1/2)-F(-1/2) = -{1\over 16}+{3\over 4} = {11\over 16}\\ P(1/4\le X\le 2) =F(1)-F(1/4) =1 - {175\over 256}= {81\over 256} \\ \Rightarrow \bbox[red,2pt]{\cases{P(-1/2\le X\le 1/2)={11\over 16} \\ P(1/4\le X\le 2) = {81\over 256} }}$$
======================= END ====================
解題僅供參考,其他國考試題及詳解
沒有留言:
張貼留言