基北區國立臺灣海洋大學附屬基隆海事高級中等學校113學年度高級中等學校特色招生考試分發入學
解答:$$|d-6|=|d-c|代表D與6的距離與C的距離相等,而c\lt 0,因此D在O,B之間,故選\bbox[red, 2pt]{(D)}$$解答:$$36的因數中,超過10的有12,18,36,而24=23\times 2,故選\bbox[red, 2pt]{(B)}$$
解答:$$甲積木被前方積木擋住,拿走甲不會改變前視圖;積木丙與積木丁背後有相同積木,\\也不會改變前視圖;積木乙的前面後面皆無積木,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{1,5,9,\dots,在第一象限\\2,6,10,\dots,在第二象限\\ 3,7,11,\dots,在第三象限\\ 4,8,12,\dots,在第四象限} \Rightarrow 186=4\times 46+2 \Rightarrow 第二象限,故選\bbox[red, 2pt]{(B)}$$
解答:
$$對稱軸如上圖,共有六個線對稱圖形,故選\bbox[red, 2pt]{(C)}$$
解答:$$(120{2\over 3})^2= (120+{2\over 3})^2 = 120^2+2\cdot 120\cdot {2\over 3}+({2\over 3})^2 = 120^2+160+{4\over 9}= 120^2+160{4\over 9},故選\bbox[red, 2pt]{(A)}$$
解答:$$甲\times: \sqrt{0.36} \gt 0 \\ 乙\times: 49的平方根為\pm 7\\,故選\bbox[red, 2pt]{(D)}$$
解答:$${1\over \sqrt{36}+\sqrt{35}} +{1\over \sqrt{35}+\sqrt{34}} +\cdots +{1\over \sqrt{3}+\sqrt{2}} +{1\over \sqrt{2}+1} \\= {\sqrt{36}-\sqrt{35}\over (\sqrt{36}+\sqrt{35})(\sqrt{36}-\sqrt{35})} +{\sqrt{35}-\sqrt{34}\over (\sqrt{35}+\sqrt{34})(\sqrt{35}-\sqrt{34})} +\cdots +{\sqrt 3-\sqrt 2\over (\sqrt{3}+\sqrt{2})(\sqrt 3-\sqrt 2)} +{ \sqrt 2-1\over (\sqrt{2}+1)(\sqrt 2-1)} \\=\sqrt{36}-\sqrt{35}+\sqrt{35}-\sqrt{34}+\cdots +\sqrt 3-\sqrt 2+\sqrt 2-1 \\= \sqrt{36}-1=6-1=5,故選\bbox[red, 2pt]{(A)}$$
解答:$$x^2(x-2)+5x(2-x)= x^2(x-2)-5x(x-2)= (x^2-5x)(x-2) =x(x-5)(x-2),故選\bbox[red, 2pt]{(A)}$$
解答:$$(20+x)(400-5x)\ge 12500 \Rightarrow (20+x)(80-x)\ge 2500\\ \Rightarrow x^2-60x-900\le 0 \Rightarrow (x-30)^2 \le 0 \Rightarrow x=30,故選\bbox[red, 2pt]{(C)}$$
解答:$$涼亭至A點與至B點等距離\Rightarrow 涼亭在\overline{AB}的中垂線上\\ 涼亭至\overline{CD}與至\overline{BC}等距\Rightarrow 涼亭在\angle C的角平分線上\\ 兩條件需同時滿足,故選\bbox[red, 2pt]{(A)}$$
解答:
解答:$$(120{2\over 3})^2= (120+{2\over 3})^2 = 120^2+2\cdot 120\cdot {2\over 3}+({2\over 3})^2 = 120^2+160+{4\over 9}= 120^2+160{4\over 9},故選\bbox[red, 2pt]{(A)}$$
解答:$$甲\times: \sqrt{0.36} \gt 0 \\ 乙\times: 49的平方根為\pm 7\\,故選\bbox[red, 2pt]{(D)}$$
解答:$${1\over \sqrt{36}+\sqrt{35}} +{1\over \sqrt{35}+\sqrt{34}} +\cdots +{1\over \sqrt{3}+\sqrt{2}} +{1\over \sqrt{2}+1} \\= {\sqrt{36}-\sqrt{35}\over (\sqrt{36}+\sqrt{35})(\sqrt{36}-\sqrt{35})} +{\sqrt{35}-\sqrt{34}\over (\sqrt{35}+\sqrt{34})(\sqrt{35}-\sqrt{34})} +\cdots +{\sqrt 3-\sqrt 2\over (\sqrt{3}+\sqrt{2})(\sqrt 3-\sqrt 2)} +{ \sqrt 2-1\over (\sqrt{2}+1)(\sqrt 2-1)} \\=\sqrt{36}-\sqrt{35}+\sqrt{35}-\sqrt{34}+\cdots +\sqrt 3-\sqrt 2+\sqrt 2-1 \\= \sqrt{36}-1=6-1=5,故選\bbox[red, 2pt]{(A)}$$
解答:$$x^2(x-2)+5x(2-x)= x^2(x-2)-5x(x-2)= (x^2-5x)(x-2) =x(x-5)(x-2),故選\bbox[red, 2pt]{(A)}$$
解答:$$(20+x)(400-5x)\ge 12500 \Rightarrow (20+x)(80-x)\ge 2500\\ \Rightarrow x^2-60x-900\le 0 \Rightarrow (x-30)^2 \le 0 \Rightarrow x=30,故選\bbox[red, 2pt]{(C)}$$
解答:$$涼亭至A點與至B點等距離\Rightarrow 涼亭在\overline{AB}的中垂線上\\ 涼亭至\overline{CD}與至\overline{BC}等距\Rightarrow 涼亭在\angle C的角平分線上\\ 兩條件需同時滿足,故選\bbox[red, 2pt]{(A)}$$
解答:
$$假設\overline{AQ}=x \Rightarrow \overline{CP}=x \Rightarrow \overline{PR}=30-2x,由於\triangle PQR為等腰直角三角形,\\因此12=30-2x \Rightarrow x=9,故選\bbox[red, 2pt]{(C)}$$
解答:
解答:
$$假設\angle C=a^\circ,由於\overline{DE}為\overline{BC}的中垂線,因此\angle DBE=\angle C=a \Rightarrow \angle BDE=\angle EDC=90^\circ-a\\ 又\overline{BD}為\angle ADE的角平分線,因此\angle ADB= \angle BDE=90^\circ-a \Rightarrow \angle ADB= \angle BDE=\angle EDC=60^\circ\\ \Rightarrow \angle ABD=180^\circ -56^\circ-60^\circ=64^\circ,故選\bbox[red, 2pt]{(D)}$$
解答:$$假設線性函數y=f(x)=ax+b,其中y為新價格,x為舊價格\\ 因此\cases{130=100a+b\\ 55=40a+b} \Rightarrow \cases{a=5/4\\ b=5} \Rightarrow y=f(x)={5\over 4}x+5 \\ \Rightarrow f(60)={5\over 4}\cdot 60+5=80,故選\bbox[red, 2pt]{(C)}$$
解答:$$假設線性函數y=f(x)=ax+b,其中y為新價格,x為舊價格\\ 因此\cases{130=100a+b\\ 55=40a+b} \Rightarrow \cases{a=5/4\\ b=5} \Rightarrow y=f(x)={5\over 4}x+5 \\ \Rightarrow f(60)={5\over 4}\cdot 60+5=80,故選\bbox[red, 2pt]{(C)}$$
解答:$$假設報線厚a公分,對摺6次變為a\times 2^6=1公分, 因此a={1\over 2^6}\\ 對摺16次厚度為a\cdot 2^{16}={1\over 2^6}\cdot 2^{16}=2^{10}=1024公分,故選\bbox[red, 2pt]{(D)}$$
解答:$$\overline{AB}=a \Rightarrow \overline{DE}=\overline{DB}={a\over 2} \Rightarrow \overline{GH}={1\over 2}\overline{DE}={1\over 4}a \Rightarrow \triangle GHI面積={\sqrt 3\over 4}({a\over 4})^2 =3\sqrt 3\\ \Rightarrow {a^2\over 64}\sqrt 3=3\sqrt 3 \Rightarrow a^2=64\times 3 \Rightarrow a=8\sqrt 3,故選\bbox[red, 2pt]{(C)}$$
解答:
解答:$$\overline{AB}=a \Rightarrow \overline{DE}=\overline{DB}={a\over 2} \Rightarrow \overline{GH}={1\over 2}\overline{DE}={1\over 4}a \Rightarrow \triangle GHI面積={\sqrt 3\over 4}({a\over 4})^2 =3\sqrt 3\\ \Rightarrow {a^2\over 64}\sqrt 3=3\sqrt 3 \Rightarrow a^2=64\times 3 \Rightarrow a=8\sqrt 3,故選\bbox[red, 2pt]{(C)}$$
解答:
$$\triangle AOP三內角為30^\circ-60^\circ-90^\circ, 因此\overline{AP}= \sqrt{3}\cdot \overline{OA}=\sqrt 3 \Rightarrow \triangle AOP面積= {1\over 2}\cdot 1\cdot \sqrt 3={\sqrt 3\over 2}\\ \Rightarrow 四邊形AOBP面積=2\times {\sqrt 3\over 2}=\sqrt 3\\ 扇形OAB面積={1\over 3}圓面積={1\over 3}\pi \Rightarrow 著色面積=\sqrt 3-{1\over 3}\pi,故選\bbox[red, 2pt]{(D)}$$
解答:$$B在y={1\over 4}x^2上,因此B的y坐標={1\over 4}\cdot 4^2=4 \Rightarrow B(4,4), 又A與B對稱y軸,因此A(-4,4)\\ \Rightarrow \overline{AB}=8 \Rightarrow b=\overline{CD} ={1\over 3}\overline{AB}= {8\over 3} \Rightarrow D的x坐標={4\over 3} \Rightarrow D({4\over 3},4) \Rightarrow 4=a\cdot ({4\over 3})^2 \\ \Rightarrow a={9\over 4} \Rightarrow b-a={8\over 3}-{9\over 4}={5\over 12},故選\bbox[red, 2pt]{(A)}$$
解答:$$假設全班有N人,則N\times 60\%=24 \Rightarrow N=40 \Rightarrow 40\times 85\%=34 \\ \Rightarrow 160-165公分有34-24=10人,故選\bbox[red, 2pt]{(B)}$$
解答:$$(a,b)=(1,1),(1,2),(1,4),(1,6), (2,1), (2,3), (2,5),(3,2),(3,4),(4,1),(4,3),\\(5,2), (5,6),(6,1),(6,5),共15種可能,機率為{15\over 36}={5\over 12},故選\bbox[red, 2pt]{(B)}$$
解答:$$y=0代入函數可得(x+4)^2=5 \Rightarrow x=\pm \sqrt 5-4 \Rightarrow a+b=(\sqrt 5-4)+(-\sqrt 5-4)=-8\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$1個過號需等2個正常號,因此7個過號需等正常號14位,30+14=44,故選\bbox[red, 2pt]{(B)}$$
解答:$$2人兒童票免費,其他20人買團體票,需20\times 140=2800元,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設\cases{\stackrel{\large{\frown}}{AC}=a \\\stackrel{\large{\frown}}{CD}=b \\\stackrel{\large{\frown}}{DB}=c } \Rightarrow \stackrel{\large{\frown}}{AC} +\stackrel{\large{\frown}}{AD} =\stackrel{\large{\frown}}{AB} \Rightarrow a+a+b=a+b+c \Rightarrow a=c \Rightarrow\stackrel{\large{\frown}}{AC} =\stackrel{\large{\frown}}{DB} \\ \Rightarrow \triangle ACB \cong \triangle BDA \Rightarrow \overline{BC}=\overline{AD}=8 \Rightarrow \overline{AB}=\sqrt{6^2+8^2}=10 \Rightarrow 圓半徑r=5\\ \Rightarrow 圓面積=r^2\pi=25\pi,故選\bbox[red, 2pt]{(C)}$$
解答:$$B在y={1\over 4}x^2上,因此B的y坐標={1\over 4}\cdot 4^2=4 \Rightarrow B(4,4), 又A與B對稱y軸,因此A(-4,4)\\ \Rightarrow \overline{AB}=8 \Rightarrow b=\overline{CD} ={1\over 3}\overline{AB}= {8\over 3} \Rightarrow D的x坐標={4\over 3} \Rightarrow D({4\over 3},4) \Rightarrow 4=a\cdot ({4\over 3})^2 \\ \Rightarrow a={9\over 4} \Rightarrow b-a={8\over 3}-{9\over 4}={5\over 12},故選\bbox[red, 2pt]{(A)}$$
解答:$$假設全班有N人,則N\times 60\%=24 \Rightarrow N=40 \Rightarrow 40\times 85\%=34 \\ \Rightarrow 160-165公分有34-24=10人,故選\bbox[red, 2pt]{(B)}$$
解答:$$(a,b)=(1,1),(1,2),(1,4),(1,6), (2,1), (2,3), (2,5),(3,2),(3,4),(4,1),(4,3),\\(5,2), (5,6),(6,1),(6,5),共15種可能,機率為{15\over 36}={5\over 12},故選\bbox[red, 2pt]{(B)}$$
解答:$$y=0代入函數可得(x+4)^2=5 \Rightarrow x=\pm \sqrt 5-4 \Rightarrow a+b=(\sqrt 5-4)+(-\sqrt 5-4)=-8\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$1個過號需等2個正常號,因此7個過號需等正常號14位,30+14=44,故選\bbox[red, 2pt]{(B)}$$
解答:$$2人兒童票免費,其他20人買團體票,需20\times 140=2800元,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設\cases{\stackrel{\large{\frown}}{AC}=a \\\stackrel{\large{\frown}}{CD}=b \\\stackrel{\large{\frown}}{DB}=c } \Rightarrow \stackrel{\large{\frown}}{AC} +\stackrel{\large{\frown}}{AD} =\stackrel{\large{\frown}}{AB} \Rightarrow a+a+b=a+b+c \Rightarrow a=c \Rightarrow\stackrel{\large{\frown}}{AC} =\stackrel{\large{\frown}}{DB} \\ \Rightarrow \triangle ACB \cong \triangle BDA \Rightarrow \overline{BC}=\overline{AD}=8 \Rightarrow \overline{AB}=\sqrt{6^2+8^2}=10 \Rightarrow 圓半徑r=5\\ \Rightarrow 圓面積=r^2\pi=25\pi,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{\overline{PA}=\overline{PB} \Rightarrow \angle PAB=\angle PBA=(180^\circ-20^\circ)\div 2=80^\circ \\\overline{PB}=\overline{PC} \Rightarrow \angle PBC=\angle PCB=(180^\circ-40^\circ)\div 2=70^\circ} \\ \Rightarrow \angle ABC=\angle PBA+\angle BPC=80^\circ+70^\circ=150^\circ,故選\bbox[red, 2pt]{(D)}$$
解題僅供參考,其他特招歷年試題及詳解
沒有留言:
張貼留言