國立臺灣科技大學112學年度碩士班招生試題
系所組別:自動化及控制研究所碩士班
科目:工程數學
解答:y″−y=0⇒λ2−1=0⇒λ=±1⇒yh=c1ex+c2e−xy″−y=5sin2(x)=52(1−cos(2x))⇒yp=A+Bcos(2x)+Csin(2x)⇒y′p=−2Bsin(2x)+2Ccos(2x)⇒y″p=−4Bcos(2x)−4Csin(2x)⇒y″p−yp=−A−5Bcos(2x)−5Csin(2x)=52−52cos(2x)⇒{A=−5/2B=1/2C=0⇒yp=−52+12cos(2x)⇒y=yh+yp⇒y=c1ex+c2e−x−52+12cos(2x)⇒y′=c1ex−c2e−x−sin(2x)⇒{y(0)=c1+c2−5/2+1/2=2y′(0)=c1−c2=−4⇒{c1=0c2=4⇒y=4e−x−52+12cos(2x)解答:f(t+2)=f(t)⇒L{f(t)}=∫20f(t)e−stdt1−e−2s=11−e−2s∫20te−stdt=11−e−2s⋅1s2(1−e−2s(2s+1))=1s2(1−e−2s)(1−(2s+1)e−2s)
解答:y′=dydx=yx+y⇒ydx−(x+y)dy=0⇒{P(x,y)=yQ(x,y)=−(x+y)⇒{Py=1Qx=−1⇒u′=−Py−QxPu=−2yu⇒y2u′+2yu=0⇒(y2u)′=0⇒y2u=c1⇒integration factor u=1y2⇒{uP=1/yuQ=−(x+y)/y2⇒(uP)y=−1y2=(uQ)x⇒Φ(x,y)=∫1ydx=∫−x+yy2dy⇒Φ(x,y)=xy+ϕ(y)=xy−lny+ρ(x)⇒xy−lny=c1
解答:a0=1π∫π−π(x−x2)dx=−23π2an=1π∫π−π(x−x2)cos(nx)dx=−4n2(−1)nbn=1π∫π−π(x−x2)sin(nx)dx=−2n(−1)n⇒f(x)∼−13π2−∞∑n=12n(−1)n[2ncos(nx)+sin(nx)]
解答:F{ddtte−2tcos(t)u(t)}=iωF{te−2tcos(t)u(t)}=iω⋅iddωF{e−2tcos(t)u(t)}=−ωddωF{e−2tcos(t)u(t)}=−ω⋅ddω(2+iω1+(2+iω)2)=−ω⋅(i1+(2+iω)2−(2+iω)(2(2+iω)i)(1+(2+iω)2)2)=−ω⋅iω2+4ω−3i(1+(2+iω)2)2=−iω3+4ω2−3iω(1+(2+iω)2)2⇒F{x(t)}=iddω(−iω3+4ω2−3iω(1+(2+iω)2)2)=i⋅(−3iω2+8ω−3i(1+(2+iω)2)2+−4iω4−24ω3+44iω2+24ω(1+(2+iω)2)3)=3ω2−8iω−3(1+(2+iω)2)2+4ω4−24iω3−44ω2+24iω(1+(2+iω)2)3=ω4−4iω3+6ω2−28iω−15(1+(2+iω)2)3
解答:(1) A=[sinθ−cosθ0cosθsinθ0001]⇒AAT=[sinθ−cosθ0cosθsinθ0001][sinθcosθ0−cosθsinθ0001]=[cos2θ+sin2θsinθcosθ−sinθcosθ0cosθsinθ−cosθsinθcos2θ+sin2θ0001]=[100010001]=I⇒A is orthogonalQED.(2) det(A−λI)=−λ3+(2sinx+1)λ2−(2sinx+1)λ+1=−(λ−1)(λ2−(2sinx)λ+1)=0⇒eigenvalues: 1,sinx±icosx
解答:Let {x=(a1,a2)y=(b1,b2)⇒⟨T(x),y⟩=⟨x,T∗(y)⟩⇒⟨(−2ia1+3a2,a1−a2),(b1,b2)⟩=⟨(a1,a2),T∗(y))⟩⇒⟨(a1,a2),T∗(y)⟩=−2ia1b1+3a2b1+a1b2−a2b2=a1(−2ib1+b2)+a2(3b1−b2)⇒T∗(b1,b2)=(−2ib1+b2,3b1−b2)
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
第四題 a_n,b_n最後結果都沒除掉pi,故不對.
回覆刪除謝謝, 已修訂
刪除