Processing math: 100%

2020年11月29日 星期日

107年臺中文華高中教甄-數學詳解

臺中市立文華高級中等學校 107 學年度第 1 次教師甄選
數學科專業知能試題本(填充題公告)

一、填充題
a1=1a2=S1+S2=1+1+a2a2=3a3=S2+S2+a3=2+4+a3a3=5an=2n1a107=2×1071=213


 f(x)=(x2x+3)5=5n=0C5nx2n(3x)5nx7=C52(1)3+C53(6)=1060=70


x+y+z=7,x,y,ZH37×7!3!2!2!=36×210=7560


6x336x2+17x56=0:x336x2+17x56=(x6)(x226x5)=(x6)(x+16)(x16)6,1+6,1+6;2S==36S=326=s(s6)(s+16)(s16)=36262(1+62)(1+62)=9212=32

¯CD=aABDACD=¯BD¯CD=1a(1);{ABD=12¯AD¯ABsin30ACD=12¯AD¯ACABDACD=¯AB/2¯AC=12¯AB(2)(1)=(2)1a=¯AB2¯AB=2acosBAC=¯AC2+¯AB2¯BC22¯AB¯AC12=1+4/a2(a+1)24/aa4+2a32a4=0a3(a+2)2(a+2)=0(a32)(a+2)=0a3=2a=32



{A(1,2,3)B(2,1,2){|OA|=14|OB|=3OP=(x2y,2xy,3x+2y)=xOA+yOBcosAOB=OAOB|OA||OB|=2314=1421sinAOB=42721|OA||OB|sinAOB×(21)(1(1))=314×42721×2=2122

{A(3,4,1)B(1,2,5)E:2xy+2z+9=0f(x,y,z)=2xy+2z+9{f(A)>0f(B)>0d(E,A)=13/3=¯AGd(E,B)=23/3=¯BF¯AB=56A,BE¯BC=233133=103¯AC=56(103)2=23101;¯PG=a¯PF=23101a¯PA2+¯PB2=¯AG2+¯PG2+¯PF2+¯BF2=1699+a2+(23101a)2+5299=2a243101a+11029a=1013¯PA2+¯PB220294049+11029=9009=100


{A(xa,ya)(1,4)=(A+B)/2B(2xa,8ya);A,B{25x2a+4y2a=100(1)25(2xa)2+4(8ya)2=100(2)(2)25x2a100xa+100+4y2a+64ya+256=100100xa+64ya+356=0xa=16ya+8925(1)25(16ya+8925)2+4y2a=100ya=4±5178979ABm=2ya+82xa2=2ya+8216ya+89252=50ya+20032ya+128=250178979160178979=2516AB:y+4=2516(x1)25x16y=89

f(x)g(x)y=xy=f(x)y=g(x)=2×(y=f(x)y=x)y=f(x)=x3+x2+x=xx3+x2=0x2(x+1)=0x=1,0y=f(x)y=x=01x3+x2dx=[14x4+13x3]|01=112=2×112=16

解:
z1=(2cosθ+3)+i(2sinθ+5){x=2cosθ+3y=2sinθ+5(x3)2+(y5)2=22z1O(3,5)r=2;|z2z1|=1z1z21z2z113();z3=kω+2=(23k)+ki{x=23ky=kx=23y|z2z3|=z2z3===d(O,x+3y=2)3=3+5321+33=5+532


[a1a2a3b1b2b3c1c2c3][a1b1c1a2b2c2a3b3c3]=[16α10α9β10β25]{|a|2=16|b|2=9|c|2=25ab=αbc=βac=10A=[a1a2a3b1b2b3c1c2c3]AAT=[16α10α9β10β25]det(A)2=det([16α10α9β10β25])(203)2=25α2+20αβ16β2+270025α220αβ+16β21500=0(a+c)b=ab+bc=α+β{f(α,β)=α+βg(α,β)=25α220αβ+16β21500利用Lagrange 算子來求 f 的極值{fα+λgα=0fβ+λgβg=0{1+λ(50α20β)=01+λ(20α+32β)=0g=050α20β=20α+32βα=2635βα=2635βg=0β=3530561α=2630561α+β=305

{En=En1+(56)n2E2=2En=E2+56+(56)2++(56)n2=2+5/6(5/6)n115/6=2+56(5/6)n1=76(56)n1

S(n)=a1+a2++an=n32nan=S(n)S(n1)=n32n((n1)32(n1))=3n23n1{a2n=3(2n)23(2n)1=12n26n1a3n=3(3n)23(3n)1=27n29n1limn3a3+a6++a3n3a2+a4++a2nn=limn3nk=1a3k3nk=1a2kn=limn3nk=1(27k29k1)3nk=1(12k26k1)n=limn3276n(n+1)(2n+1)92n(n+1)n32n(n+1)(2n+1)3n(n+1)nn=327334=3934




limnnk=1(3n+k)(nk)n2=limnnk=13n22nkk2n2=limn1nnk=132kn(kn)2=1032xx2dxy=32xx2x2+2x+y2=3(x+1)2+y2=22{O(1,0)r=2()OAB=1622π1213=2π332

f(x)=x1x2=x(1+x2+x4+x6+)=x+x3+x5+x7+f[7]7!f[7](0)=7!=5040



an={an+an1=k(k1)n1a2=k(k1)a3=k(k1)(k2){k=5n=7{a2=5×4=20a3=5×4×3=60a4=5×4360=260a5=5×44260=1020a6=5×451020=4100a7=5×464100=16380
f(x)=limnx2n1+ax2+bxx2n+1={ax2+bx|x|<11x|x|>1;{limx1+f(x)=1limx1f(x)=a+bf(1)=limn12n1+a+b12n+1=a+b+121=a+b=a+b2a+b=1(1);{limx1+f(x)=ablimx1f(x)=1f(1)=limn(1)2n1+ab(1)2n+1=ab12ab=1=(ab1)/2ab=1(2)(1)(2)(a,b)=(0,1)



(x+3)(y2)=3(3,2)(0,0)xy=3xy=3y+xy=0P(x0,y0)LmL=y(x0)=y0x0L:y=y0x0(xx0)+y0{LyA(0,2y0)LxB(2x0,0)ABO=12|2x0|×|2y0|=2|x0y0|=2|3|=6


2 則留言: