2022年5月2日 星期一

111學年度四技二專統測--數學(C)詳解

111 學年度科技校院四年制與專科學校二年制

統一入學測驗-數學(C)

解答x=log373x=7(B)
解答a1+a2++an=a1(1rn)1r=2(13n)13=3n1>20223n>2023{36=72937=2187n7(B)
解答3.1x4.90.9x40.9|x4|0.9{a=4b=0.9ab=4×0.9=3.6(B)
解答(A):sinx=2πsin(2x)=π|sin(2x)|=π/2(B):sinx=2π3sinx=2π(C)×:cosx=2πcos(2x)=π(D):cosx=2π4cosx=2π(C)
解答A(x+2)(x+3)+B(x2)(x+3)+C(x2)(x+2)=(A+B+C)x2+(5A+B)x+6A6B4C=x2+2x+7A+B+C=1(A)
解答f(x,y)=2xy+12ALf(A)=f(a,6)>02a+6+12=2a+18>0a>9(D)
解答


ACPBDP(AAA)¯AP¯BP=¯AC¯BD=d(A,L)d(B,L)=|14+162+1|=25(A)
解答5x4<x2<x+2滿{x2<x+2x2x2<0(x2)(x+1)<05x4<x2x25x+4>0(x4)(x1)>0{1<x<2x>4x<11<x<1(A)
解答x2+y2+2x+4y3=0(x+1)2+(y+2)2=8{P(1,2)r=8=22d(P,L1)=|12+12|=2;L1L2a=bL2:ax+ay+10=0d(P,L2)=|a2a+102a|=|103a2a|=2(3a10)2=4a2(a10)(5a10)=0a=2(a=10L2=L1,)a+b=2+2=4(B)
解答:ax4+bx3+6x2+5x+2=(x+1)2(ax2+(b2a)x+(6+3a2b))+(7+3b4a)x43a+2b{7+3b4a=343a+2b=4{a=4b=2a+b=6(B)
解答{3x+3y4z=104x+3y3z=212x+6y2z=26{x=6y=4z=53x+5y2z=18+2010=28(A)
解答D¯CD=x{ADE:tan30=/(a+b+x)BDE:tan45=/(b+x)CDE:tan60=/x=3x=b+x=(a+b+x)/3{b=(31)xa=(33)xab=3331=3(A)
解答¯AB=22+0+0=2¯DA=¯DB=¯DC=2{x2+y2+z2=4(1)(x2)2+y2+z2=4(2)(x1)2+(y3)2+z2=4(3)(1)(2)x2(x2)2=02(2x2)=0x=1(1)(3){y2+z2=3(4)(y3)2+z2=4(5)(4)(5)y2(y3)2=1y=3/3(1)1+13+z2=4z2=83z=223=263(C)
解答O(0,0,0)A(140,80,100)B(140,80,x)¯OB=1801402+802+x2=1802x2=6400x=80(C)
解答66!=72034!×3!=144=720144=576(A)
解答{a=(2x+1,3)b=(3,x2)ab=(2x2,x1){|ab|2=5x26x+5|a|2+|b|2=5x2+236x+5=23x=3(D)
解答{A=[a123]B=[2cbd]{AB=[2abacd4+3b2c+3d]A+B=[a+2c1b+2d+3]AB=A+B{2ab=a+2acd=c14+3b=b+22c+3d=d+3{a=1b=1c=1/2d=1(C)
解答f(x)=x3+12xf(x)=3x212x2=93x49x212=03(x24)(x2+1)=0x2=4a=x=2f(2)=8+6=14=ba+b=2+14=16(D)
解答x+32xdx=x2x+32xdx=12x+321xdx=13x3/2+3x1/2+C(D)
解答=3032t2+6t+90dt=[12t3+3t2+90t]|30=272+27+270=283.5(C)
解答r612logr6log0.5=0.301logr0.3016=0.05=0.9511+logr=0.95log10r=0.9510r=8.91r=0.891(B):log0.50.301log8.910.950
解答cosA=52+6242256=34sinA=744sinA=2R2R=167(C)
解答ABC=12¯AB¯ACsinBAC322=1232sinBACsinBAC=22cosBAC=22=32+22a21213a2=62a2=13+62(D)
解答4x2+6y212y6=04x2+6(y1)2=12x23+(y1)22=1{x=3cosθy=2sinθ+1x+3y=3cosθ+32sinθ+3=21sin(α+θ)+3=21+3(D)
解答f1(x)=2x+ax22x3=2(x+a/2)(x3)(x+1)x=3a2=3a=6f1(x)=2x+1f1(3)=12;f2(x)=x5xbf2(3)=12=23bb=7a+b=6+7=1(C)
==================== END =========================

解題僅供參考,其他歷年試題及詳解
 

沒有留言:

張貼留言