桃園高中 111 學年度第 1 次教師甄選初試
第一部分填充題:每題 4 分,共 28 分。
1. 全班 42 人搭遊覽車出遊,每位同學事先都安排好座位,上車就坐時,同學依序排隊進入車廂,找好自己的位子,大華第一位進入車廂,他昨晚沒睡好,腦袋昏沉的隨便找一個位子坐,如果他坐到別人的位子(比如阿花),阿花就得隨機找一個位子坐下, 已知全班只有大華有”沒睡好” 的問題, 那麼第 4 位進入車廂的同學坐到自己座位的機率為_____。
解答:$$0\le a=x-[x] \lt 1\Rightarrow x^2-12[x]+11 =x^2-12(x-a)+11=0 \Rightarrow 0\le a={x^2-12x+11\over -12} \lt 1\\ \Rightarrow \cases{{x^2-12x+11\over -12}\ge 0 \Rightarrow x^2-12x+11\le 0 \Rightarrow (x-11)(x-1)\le 0 \Rightarrow 1\le x\le 11\\ {x^2-12x+11\over -12}\lt 1 \Rightarrow {-x^2+12x-23\over 12}\lt 0 \Rightarrow x^2-12x+23 \gt 0 \Rightarrow x\gt 6+\sqrt{13} 或x\lt 6-\sqrt{13}} \\ \Rightarrow \cases{6+\sqrt{13} \lt x\le 11 \Rightarrow [x] =9,10,11\\ 1\le x\lt 6-\sqrt{13} \Rightarrow [x]=1,2} \Rightarrow \cases{[x]=1 \Rightarrow x^2=1 \Rightarrow x=1\\ [x]=2 \Rightarrow x^2=13 \Rightarrow x=\sqrt{13}(不合,[\sqrt{13}] =3\ne 2)\\ [x]=9 \Rightarrow x^2=97 \Rightarrow x=\sqrt{97}\\ [x]=10 \Rightarrow x^2=109 \Rightarrow x=\sqrt{109}\\ [x]=11 \Rightarrow x^2=121 \Rightarrow x=11}\\ \Rightarrow x=\bbox[red, 2pt]{1, \sqrt{97}, \sqrt{109},11}$$
解答:
$$\alpha,\beta,\gamma,\delta為x^4+ 13x^3+17x^2 +6x+1=0的四根 \\\Rightarrow {1\over \alpha},{1\over \beta},{1\over \gamma},{1\over \delta}為1+13x +17x^2 +6x^3+x^4=0的四根\\ 令f(x)= x^4+6x^3 +17x^2+13x+1,則f'(x)=4x^3 +18x^2+34x +13 \\ 利用長除法求 {f'(x)\over f(x)} ,見上圖,可得{1\over \alpha^2}+ {1\over \beta^2}+ {1\over \gamma^2}+ {1\over \delta^2}= \bbox[red,2pt]{2}$$
解答:$$1+\sqrt{\sin x}- \sqrt x = \cos 2x+2x^2 = 1-2\sin^2 x+2x^2 \Rightarrow \sqrt{\sin x}-\sqrt x +2(\sin^2 x-x^2)=0 \\ \Rightarrow \sqrt{\sin x}-\sqrt x +2(\sin x+x)(\sin x-x)=0 \\\Rightarrow \sqrt{\sin x}-\sqrt x +2(\sin x+x)(\sqrt{\sin x}-\sqrt x)(\sqrt{\sin x}+\sqrt x)=0 \\\Rightarrow (\sqrt{\sin x}-\sqrt x)(2(\sin x+x) (\sqrt{\sin x}+\sqrt x)+1)=0\\ \Rightarrow \cases{\sqrt{\sin x}=\sqrt x \Rightarrow x=0\\ 2(\sin x+x) (\sqrt{\sin x}+\sqrt x)+1\gt 0} \Rightarrow 只有\bbox[red, 2pt]{1}實根\\0\le x\le \pi \Rightarrow \sin x \ge 0 \Rightarrow 2(\sin x+x) (\sqrt{\sin x}+\sqrt x)+1\gt 0$$
解答:
\Rightarrow \lambda = 1(重根),3 \Rightarrow a_n= C_13^n+(C_2n+C_2)\\ 將初始值\cases{a_1=1\\ a_2=1\\ a_3=2} 代入\Rightarrow \cases{3C_2+C_2 +C_3=1 \\ 9C_1+2C_2 +C_3 =1\\ 27C_1+3C_2+C_3 = 2} \Rightarrow \cases{C_1=1/12\\ C_2=-1/2\\ C_3=5/4} \\ \Rightarrow a_n= {1\over 12}3^n -{1\over 2}n+{5\over 4} \Rightarrow a_{50} ={1\over 12}\cdot 3^{50}-25+{5\over 4} \Rightarrow \log a_{50} \approx \log 3^{50}-\log 12 \\ =50\log 3-(2\log 2+\log 3) = 50\times 0.4771-(2\times 0.301+0.4771)= 22.7759 \\ \Rightarrow a_{50}為(22+1)= \bbox[red, 2pt]{23}位數$$
解答:
$$令\cases{A(甲)=(1,0,0)\\ B(乙)=(0,1/2,\sqrt 3/2)\\ C(丙)\\ O(0,0,0)},甲、乙、丙皆在地球表面上,最短路徑也在表面上(不能挖地道)\\ 又\overrightarrow{OA}\cdot \overrightarrow{OB}=0 \Rightarrow \overline{OA}\bot \overline{OB},再由題意知:\stackrel{\frown}{AC} =2\stackrel{\frown}{BC},因此\cases{\angle AOC=60^\circ\\ \angle BOC=30^\circ};\\ 令\overline{AB}與\overline{OC}交於點P,則\triangle OAP: \triangle OBP=\overline{OP}\sin 60^\circ: \overline{OP}\sin 30^\circ = \sqrt 3:1= \overline{AP}: \overline{BP} \\ \Rightarrow P=(\sqrt 3B+ A)/(\sqrt 3+1) = {1\over \sqrt 3+1}(1,{\sqrt 3\over 2},{3\over 2})\\又\overline{AB}=\sqrt 2 \Rightarrow \overline{AP}= \sqrt 2\cdot {\sqrt 3\over \sqrt 3+1} ={\sqrt 6\over \sqrt 3+1} \Rightarrow {\overline{AP}\over \sin 60^\circ }= {\overline{OP} \over \sin 45^\circ} \Rightarrow {\sqrt 6/(\sqrt 3+1)\over \sqrt 3}={\overline{OP} \over \sqrt 2}\\ \Rightarrow \overline{OP}= \sqrt 3-1 \Rightarrow C= {1\over \overline{OP}}P ={1\over (\sqrt 3-1)(\sqrt 3+1)}(1,{\sqrt 3\over 2},{3\over 2}) =\bbox[red, 2pt]{({1\over 2},{\sqrt 3\over 4}, {3\over 4})}$$
解答:
$$假設Q為原點,長寬高分為a,b,c,因此\cases{O(0,0,0)\\ A(0,b,c)\\ B(0,0,c)\\ C(a,0,c)\\ P(0,b,0)\\ R(a,0,0)} \Rightarrow \cases{M\in \overleftrightarrow{AQ} \Rightarrow M=(0,bs,cs),s\in \mathbb{R}\\ N\in \overleftrightarrow{BR} \Rightarrow N=(at,0,-ct+c),t\in \mathbb{R}}\\ \Rightarrow \cases{\overrightarrow{MN}= (at,-bs,-ct+c-s)\\ \overrightarrow{PC} =(a,-b,c)} ,\overrightarrow{MN} \parallel \overrightarrow{PC} \Rightarrow {at\over a}={-bs\over -b} ={-ct+c-s\over c} \Rightarrow \cases{s=1/3\\ t=1/3} \\ \Rightarrow \cases{M(0,b/3,c/3)\\ N(a/3,0,2c/3)} \Rightarrow \cases{\overline{MN} =\sqrt{a^2+b^2+c^2}/3 \\ \overline{PC}=\sqrt{a^2 +b^2 +c^2}} \Rightarrow {\overline{MN} \over \overline{PC}}= \bbox[red, 2pt]{1\over 3}$$
解答:$$這是經濟學上見常見的問題:\cases{需求p=-0.8q+150\\ 供應p=5.2q} ,供需平衡\Rightarrow -0.8q+150=5.2q \Rightarrow q=25\\ \Rightarrow 當q=25達成供需平衡,此時p=5.2\times 25=130 \Rightarrow \text{the producer surplus}\\=\triangle ACO面積= {1\over 2}\times 25\times 130 = \bbox[red, 2pt]{1625}$$
第二部分填充題: 每題 6 分,共 36 分。
解答:$$a_{n+3} = 5a_{n+2}-7a_{n+1}+ 3a_n \Rightarrow \lambda^3-5\lambda^2+7\lambda-3=0 \Rightarrow (\lambda-1)^2(\lambda-3)=0\\\Rightarrow \lambda = 1(重根),3 \Rightarrow a_n= C_13^n+(C_2n+C_2)\\ 將初始值\cases{a_1=1\\ a_2=1\\ a_3=2} 代入\Rightarrow \cases{3C_2+C_2 +C_3=1 \\ 9C_1+2C_2 +C_3 =1\\ 27C_1+3C_2+C_3 = 2} \Rightarrow \cases{C_1=1/12\\ C_2=-1/2\\ C_3=5/4} \\ \Rightarrow a_n= {1\over 12}3^n -{1\over 2}n+{5\over 4} \Rightarrow a_{50} ={1\over 12}\cdot 3^{50}-25+{5\over 4} \Rightarrow \log a_{50} \approx \log 3^{50}-\log 12 \\ =50\log 3-(2\log 2+\log 3) = 50\times 0.4771-(2\times 0.301+0.4771)= 22.7759 \\ \Rightarrow a_{50}為(22+1)= \bbox[red, 2pt]{23}位數$$
解答:$$令a_n為第n次連續下雨的天數,依題意:a_1+ a_2+ a_3+ a_4+a_5=16,其中a_n\in \mathbb{N}\\,因此共有H^5_{16-5} =H^5_{11}組解;接著在5個a_n的間隔中(共6個間隔),分別插入b_1-b_6\\,並符合b_1+\cdots+b_6= 12,其中b_1,b_6\ge 0, b_2-b_5\ge 1,因此有H^6_{12-4} =H^6_{8}組解;\\總共有H^5_{11}\times H^6_{8} = 1365\times 1287 =\bbox[red, 2pt]{1756755}$$
解答:$$zw+{1\over 2}wi=3i-{1\over 2}\bar wi+z \Rightarrow z(w-1)=i(3-{1\over 2}(\bar w+w)) \Rightarrow |z||w-1|=|i||3-{1\over 2}(\bar w+w)| \\ \Rightarrow 3|w-1|= |3-{1\over 2}(\bar w+w)| \Rightarrow 3\sqrt{(x-1)^2 +y^2} =|3-x|,其中w=x+yi, x,y\in \mathbb{R} \\ \Rightarrow 9((x-1)^2+y^2)=(x-3)^2 \Rightarrow \cfrac{(x-3/4)^2}{9/16} +\cfrac{y^2}{1/2}=1為一橢圓 \\ \Rightarrow \cases{a=3/4\\ b=1/\sqrt 2} \Rightarrow c=1/4 \Rightarrow \cases{中心O(3/4,0)\\ 焦點F_1(1/2,0)\\ 焦點F_2(1,0)} \Rightarrow |w-{1\over 2}|=\overline{PF_1},P在橢圓上 \\\Rightarrow \cases{P=右端點有最大值M=a+c= 3/4+ 1/4= 1 \\P=左端點有最小值m=a-c= 3/4-1/4= 1/2} \Rightarrow (M,m)=\bbox[red, 2pt]{(1,1/2)}$$
解答:$$-x^2+y^2=1 \Rightarrow y=\pm \sqrt{x^2+1} \Rightarrow 欲求面積=\int_1^\sqrt 3 (\sqrt{x^2+1}-(-\sqrt{x^2+1}))\,dx\\ =2 \int_1^\sqrt 3 \sqrt{x^2+1}\,dx = \left.\left[ x\sqrt{x^2+1}+\ln(\sqrt{x^2+1}+x) \right] \right|_1^\sqrt 3\\=2\sqrt 3 +\ln(2+\sqrt 3)-\sqrt 2-\ln(\sqrt 2+1) =2\sqrt 3-\sqrt 2+\ln {2+\sqrt 3\over \sqrt 2+1}\\ = \bbox[red, 2pt]{2\sqrt 3-\sqrt 2+\ln (2\sqrt 2+\sqrt 6-2-\sqrt 3)}$$
解答:$$8888^{8888} \lt 10000^{8888} =10^{35552} \Rightarrow 8888^{8888}最多是35553位數\Rightarrow A\lt 9\times 35553=319977\\ \Rightarrow B\le 2+9+9+9+9+9 = 47(此時A=299999) \Rightarrow B的數字和不超過3+9=12(此時B=39)\\ 現在我們要找一個數X,滿足1\le X\le 12且8888^{8888} = X \mod 9\\ 由於\cases{8888 = 5 \mod 9\\ 8888^2 = 7 \mod 9\\ 8888^3 = 8\mod 9 \\ 8888^4 = 4\mod 9\\ 8888^5 = 2\mod 9 \\ 8888^6 =1 \mod 9} \Rightarrow 8888^{8888} =8888^{1481\cdot 6+2} =8888^2 \mod 9 = 7\mod 9\\ \Rightarrow B的數字和= \bbox[red, 2pt]{7}\\註:\href{https://artofproblemsolving.com/wiki/index.php/1975_IMO_Problems/Problem_4}{參考資訊}$$
解答:
解答:$$zw+{1\over 2}wi=3i-{1\over 2}\bar wi+z \Rightarrow z(w-1)=i(3-{1\over 2}(\bar w+w)) \Rightarrow |z||w-1|=|i||3-{1\over 2}(\bar w+w)| \\ \Rightarrow 3|w-1|= |3-{1\over 2}(\bar w+w)| \Rightarrow 3\sqrt{(x-1)^2 +y^2} =|3-x|,其中w=x+yi, x,y\in \mathbb{R} \\ \Rightarrow 9((x-1)^2+y^2)=(x-3)^2 \Rightarrow \cfrac{(x-3/4)^2}{9/16} +\cfrac{y^2}{1/2}=1為一橢圓 \\ \Rightarrow \cases{a=3/4\\ b=1/\sqrt 2} \Rightarrow c=1/4 \Rightarrow \cases{中心O(3/4,0)\\ 焦點F_1(1/2,0)\\ 焦點F_2(1,0)} \Rightarrow |w-{1\over 2}|=\overline{PF_1},P在橢圓上 \\\Rightarrow \cases{P=右端點有最大值M=a+c= 3/4+ 1/4= 1 \\P=左端點有最小值m=a-c= 3/4-1/4= 1/2} \Rightarrow (M,m)=\bbox[red, 2pt]{(1,1/2)}$$
解答:$$-x^2+y^2=1 \Rightarrow y=\pm \sqrt{x^2+1} \Rightarrow 欲求面積=\int_1^\sqrt 3 (\sqrt{x^2+1}-(-\sqrt{x^2+1}))\,dx\\ =2 \int_1^\sqrt 3 \sqrt{x^2+1}\,dx = \left.\left[ x\sqrt{x^2+1}+\ln(\sqrt{x^2+1}+x) \right] \right|_1^\sqrt 3\\=2\sqrt 3 +\ln(2+\sqrt 3)-\sqrt 2-\ln(\sqrt 2+1) =2\sqrt 3-\sqrt 2+\ln {2+\sqrt 3\over \sqrt 2+1}\\ = \bbox[red, 2pt]{2\sqrt 3-\sqrt 2+\ln (2\sqrt 2+\sqrt 6-2-\sqrt 3)}$$
解答:$$8888^{8888} \lt 10000^{8888} =10^{35552} \Rightarrow 8888^{8888}最多是35553位數\Rightarrow A\lt 9\times 35553=319977\\ \Rightarrow B\le 2+9+9+9+9+9 = 47(此時A=299999) \Rightarrow B的數字和不超過3+9=12(此時B=39)\\ 現在我們要找一個數X,滿足1\le X\le 12且8888^{8888} = X \mod 9\\ 由於\cases{8888 = 5 \mod 9\\ 8888^2 = 7 \mod 9\\ 8888^3 = 8\mod 9 \\ 8888^4 = 4\mod 9\\ 8888^5 = 2\mod 9 \\ 8888^6 =1 \mod 9} \Rightarrow 8888^{8888} =8888^{1481\cdot 6+2} =8888^2 \mod 9 = 7\mod 9\\ \Rightarrow B的數字和= \bbox[red, 2pt]{7}\\註:\href{https://artofproblemsolving.com/wiki/index.php/1975_IMO_Problems/Problem_4}{參考資訊}$$
解答:
$$\triangle OBC+ \triangle OAC +\triangle OAB= \triangle ABC \Rightarrow {\triangle OBC \over \triangle ABC}+ {\triangle OAC \over \triangle ABC}+ {\triangle OAB \over \triangle ABC}=1 \\ \Rightarrow {\overline{OD}\over \overline{AD}} +{\overline{OE} \over \overline{BE}} +{\overline{OF}\over \overline{CF}} =1 \Rightarrow {4\over a }+{4\over b }+ {4\over c }=1,其中\cases{ \overline{AD} =a=\overline{OA}+4 \\ \overline{BE}=b =\overline{OB}+4\\ \overline{CE}=c = \overline{OC}+ 4} \\ \Rightarrow \cases{{1\over a } +{1\over b } +{1\over c }={ab+bc +ca\over abc} ={1\over 4} \Rightarrow abc=4(ab+bc+ca)=4t (取t=ab +bc+ca) \\a+b+c= 37+4\times 3=49} \\ 假設有一3次多項式f(x),滿足f(x)=0的三根為a,b,c,即\cases{a+ b+c=49\\ ab+bc+ca =t\\ abc=4t},\\則f(x)=(x-a)(x-b)(x-c)= x^3-49x^2+tx-4t \\ \Rightarrow f(4)=(4-a)(4-b)(4-c) =64-784+4t-4t =-720 \\ \Rightarrow -\overline{OA} \times \overline{OB} \times \overline{OC}= -720 \Rightarrow \overline{OA} \times \overline{OB} \times \overline{OC}= \bbox[red, 2pt]{720}$$
=============== END ==============
沒有留言:
張貼留言