Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年5月16日 星期一

111年中科實中教甄-數學詳解

國立中科實驗高級中學111學年度第1次教師教師甄選

一、填充題(共16題,每題5分)

解答f(x)=25x25x+5f(1x)=251x251x+5=2525x25+525x25x=2525+525x=525x+5f(x)+f(1x)=1f(1221)+f(2221)++f(220221)+f(221221)=(f(1221)+f(220221))+(f(2221)+f(219221))++(f(110221)+f(111221))+f(1)=(1+1++1)+f(1)=110+2530=11056
解答12+312=12+63=12+227=9+3=3+3{a=4b=312a3ab1+5a+b+1=543+54+3=58163=4013
解答{u=lnxdv=dx{du=1xdxv=xlog10xdx=1ln10lnxdx=1ln10(xlnx1dx)=1ln10(xlnxx)+C,C
解答n123456789101112137nmod13710591112638421712121mod12=17121mod13=71mod13=7
解答x2+20222=y2+202122022220212=y2x2(y+x)(yx)=4043=311×13{y+x=311yx=13{x=(31113)÷2=149y=(311+13)÷2=162(x,y)=(149,162)
解答y=|x5||x1|+|x+2|12x52y={x5x+1+x+212x52=12x92if 5x75xx+1+x+212x52=32x+112if 1x55x1+x+x+212x52=12x+72if 2x15x1+xx212x52=32x12if 3x2min(y)={2if 1x752if 3x1b=2
解答
x2+y2=|x|+|y|{(x1/2)2+(y1/2)2=1/2if x,y0(x+1/2)2+(y1/2)2=1/2if x0,y0(x1/2)2+(y+1/2)2=1/2if x0,y0(x+1/2)2+(y+1/2)2=1/2if x,y0=2ABCD1/2=(2)2+2×(12)2π=2+π
解答{L1=AB:2xy+2=0L2=AC:2x+y6=0A=L1L2=(1,4);BL1B(t,2t+2)tR;¯OB=¯OA=52t2+(2t+5)2=50(t+5)(t1)=0t=5(t=1B=A)B(5,8)¯AB=36+144=65=¯EF
解答z=3+33i10{|z|=9100+27100=610=35|z1|=169100+27100=1410=75k=n|zk+1zk|=k=n|zk(z1)|=k=n|zk||z1|=75k=n(35)k=75(35)n(113/5)=72(35)n<1020log7log2+n(log3log5)=0.84510.301+n(0.4771(10.301))=0.54410.2219n<2020.5441<0.2219nn>92.58n=93
解答f(x)=|x+12x+33x+2x+1x+2x+31|=2x36x2+4x+12=(x+3)(2x24)f(x5)=0(x2)(2(x5)24)=0α=2f(x21)=2x6+10x2+4=0ββ2=1+2hβ2=h2+(2α/2)2h2=21ABCDE:{A(0,0,0)B(α,0,0)=(2,0,0)C(α,α,0)=(2,2,0)D(0,α,0)=(0,2,2)E(α/2,α/2,h)=(1,1,h){AB=(2,0,0)AE=(1,1,h)AD=(0,2,0){u=AB×AE=(0,2h,2)v=AE×AD=(2h,0,2)cosθ=uv|u||v|=44h2+4=1h2+1=12=22
解答p16x=q14x2x(p16q14x)=0x=0,p16q14A(p,q)=p1/6q1/40p16xq14x2dx=[12p16x213q14x3]|p1/6q1/40=(1213)p12q12=16pqL=limn1n2nk=1A(k,k+1)=limn1n2nk=116k(k+1)limn1n2nk=116k<L<limn1n2nk=116(k+1)112<L<112()L=112
解答XXGeometric(p=2/10)p(X=x)=(1p)x1pEX=1/p=5
解答:{X:AY:BX+Y:{μ(X)=50σ(X)=15μ(Y)=25σ(Y)=10σ(X+Y)=23{Var(X)=152Var(Y)=102μ(X+Y)=(50n+25n)/(n+n)=75/2Var(X+Y)=232Cov(X,Y)=(Var(X+Y)Var(X)Var(Y))÷2=(232152102)÷2=102r=Cov(X,Y)σ(X)σ(Y)=10215×10=0.68
解答:763×66+3×56463!=204606=34103395
解答f(x)=x44x3+5x(x3(5t310t2+3t+1)dt)+12f(3)=81108+15(0)+12=0f(x)=4x312x2+5(5x310x2+3x+1)=x32x23x+4f(3)=27189+4=50{f(3)=0f(3)=50limh0f(3+4h)5h=limh0f(3+4h)f(3)5h=limh045f(3+4h)f(3)4h=45limk0f(3+k)f(3)k(k=4h)=45f(3)=45(50)=40
解答{A(1,1,3)B(1,2,3)C(2,0,4)D(1,1,1)CD:x21=y1=z43;PCDP(t+2,t,3t+4),tR{u=PA=(t3,1t,3t1)v=PB=(t1,2t,3t1)PAB=12|u|2|v|2(uv)2f(t)=|u|2|v|2(uv)2=(11t214t+11)(11t212t+6)(11t213t+6)2=54t260t+30t=5/9P=(139,59,73)

二、計算證明題(共2題,每題10分)

解答y=arctanxtany=xddxtany=ddxxysec2y=1ddxarctanx=y=1sec2y=11+tan2y=11+x2ddxarctanx=11+x2,Q.E.D
解答(1)f(2)=9<0y=f(x)f(x)=a(x2)29f(x)=0x=2±3a2+3/a29a(x2)2dx=36/2[9x13a(x2)3]|2+3/a2=1818a=18a=1f(x)=(x2)29=x24x5(2)(1):{β=2+3=5α=23=1g(x)=x3+dx2+exg(x)=3x2+2dx+e{g(α)=g(1)=32d+e=0g(β)=g(5)=75+10d+e=0{d=6e=15g(x)=x3+6x2+15xR=01g2(x)πdx=π01x612x5+6x4+180x3+225x2dx=π[17x72x6+65x5+45x4+75x3]|01=π(0(324735))=116735π
======================== END ==============================
解題僅供參考,其他教甄試題及詳解


2 則留言:

  1. 第10題行列式展開,後面因式分解筆誤,應該是-(x+3)(2x^2-4)

    回覆刪除