Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2022年5月20日 星期五

111年新北樟樹高中教甄-數學詳解

新北市立樟樹國際實創高級中等學校 111 學年度教師甄選筆試

【數學科專業能力】試題

解答1n(x+y)n+12022(x+y)20232022=220232;220=576mod1000240=776mod1000280=176mod10002160=976mod10002320=576mod1000=422023=21280264028022023=1767761765768mod1000=608mod1000220232=606mod1000
解答an=nk=13kn4+4k2n2=nk=11n3kn2+4k2=nk=11n3k/n1+4(k/n)2limnan=103x1+4x2dx=[341+4x2]|10=34(51)
解答x=2022:120212C20212;x=2021:120202C20202;x=3:122C22;=2021k=2(k+1)Ck2/C20223=1C202232021k=2(k+1)k(k1)2=12C202232021k=2(k3k)=3202220212020(20212202224202120222)=32021202242020322020=320211011322020=60694
解答
OAOB:BOC:COD:DOE:EOF:FOA=5:5:7:7:5:7{AOB=BOC=EOF=50COD=DOE=FOA=70BAF=120cosBAF=cos120=52+72¯BF2257=12¯BF2=109ABCDEF=BDF+3×ABF=34¯BF2+3257sin120=10943+10543=10723
解答A=[3113]=2[3/21/21/23/2]=2[cos30sin30sin30cos30]A99=(2)99[cos2970sin2970sin2970cos2970]=(2)99[cos90sin90sin90cos90]=(2)99[0110]=[02992990]=[abcd]{a=d=0b=299c=299log4adbca+bcd=log421982100=log4298=log4449=49
解答{L1:xy=0L2:xy=8L3:3x+y=0L3:3x+y=kd(L1,L2)=d(L3,L4)82=|k|10=|k|=85k=85(){A=L1L3=(0,0)B=L2L3=(2,6)a=¯AB=210ka=85210=22
解答
(1){A(1,2,0)B(4,2,3)C(1,8,3)H(a,b,c){AB=(3,0,3)AC=(0,6,3)AH=(a1,b2,c)n=AB×AC=(18,9,18)AH=23AB13AC+2(AB×AC)(a1,b2,c)=(2,0,2)(0,2,1)+(36,18,36)=(38,20,33)=16(2)\overrightarrow{AH}=(a-1,b-2,c)= (38,-20,33) \Rightarrow \cases{a=39\\ b=-18 \\ c=33} \Rightarrow H(39,-18,33) \\E:18(x-1)-9(y-2)+18z) =0 \Rightarrow 2x-y+2z=0 \\ 令H'(d,e,f),則\cases{\overrightarrow{HH'}= (39-d,-18-e,33-f) \parallel \vec n\\ H''=\overline{HH'}中點= ((39+d)/2,(-18+e)/2, (33+f)/2)) \in E} \\ \Rightarrow \cases{39-d:-18-e:33-f = 2:-1:2 \cdots(1)\\ 39+d-(-18+e)/2+33+f=0 \cdots(2)} ,由(1)可得\cases{d=39-2t\\ e=t-18\\ f=33-2t} 代入(2)\Rightarrow t=36\\ \Rightarrow \cases{d=-33\\ e=18\\ f=-39} \Rightarrow H'=\bbox[red,2pt]{(-33,18,-39)}(3)投影點H''= (H+H')/2 =(3,0,-3) \Rightarrow \overrightarrow{AH''}= (2,-2,-3) =\alpha \overrightarrow{AB}+ \beta\overrightarrow{AC} =(3\alpha,6\beta,-3\alpha+ 3\beta)\\ \Rightarrow \cases{\alpha=2/3\\ \beta=-1/3}; \bbox[red, 2pt]{由於-1/3 \lt 0,因此投影點不在\triangle 內部;}
解答


(1) D(x)= S(x) \Rightarrow -{x^2\over 10}+270 = {x^2\over 20}+3x+45 \Rightarrow {3\over 20}x^2+3x-225=0\\ \Rightarrow x^2+20x -1500=0 \Rightarrow (x-30)(x+50) =0 \Rightarrow x=30 \Rightarrow D(30)=S(30) =180 \\ \Rightarrow 均衡點= \bbox[red, 2pt]{(30,180)}\\(2) 上圖著色區域面積=\int_0^{30} 180-S(x)\,dx =5400-3150= \bbox[red,2pt]{2250} 

======================== END ==============================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言