Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2022年5月19日 星期四

111年全國教甄聯招-數學詳解

教育部受託辦理111學年度公立高級中等學校教師甄選

第一部分:選擇題(共40分)

一、單選題(每題3分,共24分)

解答f(x,y)=3x2y+kf(P)f(Q)<0(k+18)(k13)<018<k<13k=17,16,,1217+13=30k(C)
解答y=px33px2+(3p+q)xpq+6y=3px26px+(3p+q)y=6px6py=06px6p=0x=1(1,y(1))=(1,6)(C)
解答
{A(4,3)B(b,0)C(a,a){BxCy=x(4b)2+32+(ab)2+a2+(4a)2+(3a)2=¯AB+¯BC+¯CA{Ay=xA(3,4)AxA(4,3)¯AAxBy=xC¯AB+¯BC+¯CA=¯AA=1+72=52(B)
解答

{¯CD=aBCD=α{tanα=¯BD/¯CD=1/2atan(θ+α)=2.5/a=5/2atan(θ+α)=tanθ+tanα1tanθtanα52a=tanθ+1/2a1tanθ/2a(2a+52a)tanθ=4tanθ=f(a)=8a4a2+5f(a)=84a2+564a2(4a2+5)2=4032a2(4a2+5)2=0a=52(B)
解答

(B)
解答{f(x)=10xg(x)=10xh(x)=logx{f(x)=g(x)x=αf(x)=h(x)x=βg(x)=h1(x){y=f(x)y=g(x)(α,10α)f(α)=g(α)10α=10α(1)y=f(x)y=h(x)(β,logβ)(logβ,β)=(α,10α)logβ=α(2)10α+logβ=(10α)+α=10(C)
解答limn1n33nk=1(4n+k)2=limn1n33nk=1(16n2+8nk+k2)=limn1n3(16n23nk=11+8n3nk=1k+3nk=1k2)=limn1n3(16n23n+8n3n(3n+1)2+3n(3n+1)(6n+1)6)=48+36+9=93(C)
解答308793087×a99+5+3+2+1+0=2079(D)

二、複選題(每題4分,共16分,全對才給分)

解答(A)×:PL2P(t+1,2t4,2t2)d(P,E)=2t+22t+465=0L2E(B):{L1u=(2,3,2)L2v=(1,2,2)n=u×v=(2,2,1){AL1D=¯BCL2{A(2t+3,3t+5,2t+3)D(s+1,2s4,2s2),t,sRAD=(s2t2,2s3t9,2s2t5)ADns2t22=2s3t92=2s2t51{t=1s=2A=(1,2,1)(C)×:H=D=(3,0,2)(D):¯AH=22+22+12=3¯BC=33×2ABC=12×33×2×3=33(BD)
解答(A):g(x)=f(x24x+3)=f((x3)(x1))g(3)=f(0)=28(B)×:x=2+2x2=4x2x3=4x22xf(2+2)=(4x22x)9x2+26x28=5x2+24x28=5(4x2)+24x28=4x18=4(2+2)18=4210(C):f(x)=3x218x+26f(2)=2L:y=2(x2)4=2x8L{A(0,8)B(4,0)OAB=12×8×4=16(D)×:f(x)<2x39x2+26x30<0(x5)(x24x+6)<0x<5(AC)
解答a==(1015)3+(515)3=13b==(515)3=127c==(1015)3=827a>c>ba=b+c(BCD)
解答A1,A2,,A8(A):64×6=24(B):{Ai1AiAi+1=135Ai1AiAi+2=112.5Ai2AiAi+1=112.5,i=188×3=24(C):C83=562424562424=8(D):C84=70(ABCD)

第二部分:綜合題(共60分)

一、填充題(每題4分,共36分)

解答{f(a,b)=2a+4bg(a,b)=a+b13依 Lagrange 算子{f=λgg=0{fa=λgafb=λgbg=0{ln22a=λ(1)ln44b=λ(2)a+b13=0(3)(1)(2)2a24b=12a=22b+1a=2b+1(3)3b=12b=4a=9f(9,4)=29+44=512+256=768
解答{R(20,0)P(12,16)POR=θθ=tan143tanθ2=12{sin(θ/2)=1/5cos(θ/2)=2/52π+θ(2π+θ)÷2=π+12θ()=(20cosθ2,20sinθ2)=(85,45)
解答BA20117171911616181151517114,201516113,1920151541,72015362015252016142017=120119(17+16+1516+16+17)=153190
解答x68=(x2)323=(x22)(x4+2x2+4)=0x6=8x2=2x4+2x2+4=0{A(2/2,6/2)B(2/2,6/2)C(2/2,6/2)D(2/2,6/2)ABCD=¯ABׯBC=2×6=23
解答a>13logax>2logax>logaxABC¯ABA(α,β)B(α12,β)C(α12,β+12)logaα=2loga(α12)(α12)2=αα225α+144=0(α16)(α9)=0α=16(α=9,
解答\alpha,\beta,\gamma 為f(x)=0之三根 \Rightarrow \cases{\alpha +\beta +\gamma = -3\\ \alpha\beta +\beta\gamma +\gamma\alpha = -4\\ \alpha\beta \gamma = 2} 且f(\alpha)=f(\beta) = f(\gamma)=0\\ \cases{f(x)= x^3+3x^2 -4x-2\\ g(x)=x^4+6x^3 +5x^2-16x-2} \Rightarrow g(x)=f(x)(x+3)+(-2x+4) \\ \Rightarrow \cases{g(\alpha) = f(\alpha)(\alpha+3)+(-2\alpha+4) = -2\alpha+4 \\ g(\beta)= f(\beta)(\beta+3) +(-2\beta+4) = -2\beta+4 \\ g(\gamma) = f(\gamma)(\gamma+3) +(-2\gamma+4) = -2\gamma+4}  \\ \Rightarrow  {1\over g(\alpha)} +{1\over g(\beta)} +{1\over g(\gamma)} =-{1\over 2}\left({1\over \alpha-2} +{1\over \beta-2} +{1\over \gamma-2}  \right)\\ =-{1\over 2}\cdot { \alpha\beta +\beta\gamma +\gamma\alpha-4(\alpha+\beta +\gamma)+12\over \alpha\beta \gamma -2(\alpha\beta +\beta\gamma +\gamma\alpha) +4(\alpha+ \beta +\gamma)-8} =-{1\over 2}\cdot{ -4-4\cdot (-3)+12\over 2-2\cdot (-4)+4\cdot(-3)-8} =\bbox[red, 2pt]{1}
解答10位數:9876543210\to 只有一個\\ 9位數:將9876543210拿掉任一個數字,剩下就符合條件的9位數,因此有C^{10}_1個\\8位數:將9876543210拿掉任2個數字,剩下就符合條件的8位數,因此有C^{10}_2個\\ \dots\\3位數:將9876543210拿掉任7個數字,剩下就符合條件的3位數,因此有C^{10}_3個\\ 總共有C^{10}_0+ C^{10}_1 +C^{10}_2 + \cdots +C^{10}_7 =\sum_{k=0}^{10} C^{10}_k -C^{10}_8-C^{10}_9-C^{10}_{10} =2^{10} -45-10-1 = \bbox[red, 2pt]{968}
解答
x^2+y^2=|x|+|y| \Rightarrow \begin{cases} (x-1/2)^2+(y-1/2)^2 =1/2& \text {if }x,y\ge 0 \\  (x+1/2)^2+(y-1/2)^2 =1/2 & \text {if }x\le 0 ,y\ge 0 \\ (x-1/2)^2+(y+1/2)^2 =1/2 & \text {if }x\ge 0,y\le 0 \\ (x+1/2)^2+(y+1/2)^2 =1/2 & \text {if }x,y\le 0 \end{cases}\\ 所圍面積= 邊長為\sqrt 2的正方形ABCD及半徑為1/\sqrt 2的四個半圓=(\sqrt 2)^2+ 2\times ({1\over \sqrt 2})^2\pi \\ =\bbox[red, 2pt]{2 +\pi}
解答y=ax+b=x^2 \Rightarrow x^2-ax-b=0恰有一根\Rightarrow a^2+4b=0 \cdots(1)\\ y=ax+b= (x-2)^2+12 \Rightarrow x^2-(a+4)x +16-b=0 恰有一根 \\\Rightarrow (a+4)^2-64+4b=0 \Rightarrow a^2+8a+16-64+4b=0\cdots (2) \\將(1)代入(2) \Rightarrow 8a-48=0 \Rightarrow a=6 代回(1) \Rightarrow b=-9 \Rightarrow a-b= \bbox[red,2pt]{15}

二、計算證明題(每題8分,共24分)

解答等差數列\langle a_n\rangle ,其中\cases{a_1=4\\ d=8} \Rightarrow a_1+a_2+\cdots +a_n = {(2a_1+(n-1)d)n\over 2} ={(8+(n-1)8)n \over 2} =4n^2\\ 因此\cases{a_2+ a_4+ \cdots +a_{2n} =(a_2+ a_{2n})n\div 2 = 8n^2+4n\\ a_1+a_3+ \cdots +a_{2n-1} =(a_1+ a_{2n-1})n\div 2= 8n^2-4n} \\ \Rightarrow \lim_{n\to \infty} \left(\sqrt{a_2+ a_4+ \cdots +a_{2n}}-\sqrt{a_1+a_3+ \cdots +a_{2n-1}} \right)\\ =\lim_{n\to \infty}\left( \sqrt{8n^2+4n}-\sqrt{8n^2-4n}\right)=\lim_{n\to \infty} \cfrac{8n}{\sqrt{8n^2+4n}+\sqrt{8n^2-4n}} =\cfrac{8}{2\sqrt 2+2\sqrt 2} =\bbox[red, 2pt]{\sqrt 2}
解答
(1)y=\ln x \Rightarrow x= e^y \Rightarrow {d\over dx}x ={d\over dx}e^y \Rightarrow 1=y'e^y =y'x \Rightarrow y'={1\over x} \Rightarrow \bbox[red,2pt]{{d\over dx}\ln x={1\over x}}
(2)S_n= \sum_{k=1}^n {1\over (2k)(2k-1)} = \sum_{k=1}^n \left({1\over  2k-1}-{1\over 2k} \right) = \sum_{k=1}^n \left({1\over  2k-1}-({1\over k}-{1\over 2k}) \right) \\ = \sum_{k=1}^n \left({1\over  2k-1}+{1\over 2k} \right) -\sum_{k=1}^n {1\over k} =\sum_{k=1}^{2n} {1\over k}-\sum_{k=1}^n {1\over k} =\sum_{k=n+1}^{2n} {1\over k} \\ =\sum_{k= 1}^{n}{1\over n+k} =\sum_{k= 1}^{n}{1\over n} \cdot {1\over 1+k/n} \Rightarrow \lim_{n\to \infty} S_n =\int_0^1 {1\over 1+x}\,dx = \ln 2-\ln 1= \bbox[red, 2pt]{\ln 2}
解答(\log 6x) (\log 3x)+ k= (\log 2+\log 3x)(\log 3x)+ k= (\log 3x)^2 +\log 2(\log 3x) +k= 0 \\ 有相異二正根 \Rightarrow (\log 2)^2 -4k \gt 0 \Rightarrow \bbox[red,2pt]{k\lt {1\over 4}(\log 2)^2 }\\ 假設\alpha,\beta 為(\log 3x)^2 +\log 2(\log 3x) +k= 0的二根\Rightarrow  \log 3\alpha+ \log 3\beta =-\log 2 \Rightarrow \log 9\alpha\beta = \log {1\over 2}\\  \Rightarrow 9\alpha\beta ={1\over 2} \Rightarrow 兩根之積=\alpha\beta =\bbox[red,2pt]{1\over 18}
 

======================== END ==============================
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言