國立臺灣科技大學111學年度碩士班招生試題
系所組別:自動化及控制
科 目:工程數學
解答:(1)Bernoulli D.E.⇒v=y1−3=y−2⇒v′=−2y′y3⇒y′=−12y3v′⇒−12y3v′+yx=3x2y3⇒−12y2v′+1x=3x2y2⇒−12v′v+1x=3x2v⇒v′−2xv=−6x2⇒v′x2−2x3v′=−6⇒(vx2)′=−6⇒vx2=−6x+c1⇒v=1y2=−6x3+c1x2⇒y=±√1−6x3+c1x2(2)y″−3y′=0⇒yh=c1+c2e3xLet {y1=1y2=e3x⇒W=|y1y2y′1y′2|=3e3x⇒yp=−∫e3x⋅2e2xsinx3e3xdx+e3x∫2e2xsinx3e3xdx⇒yp=−15e2x(cosx+3sinx)⇒y=yh+yp=c1+c2e3x−15e2x(cosx+3sinx)⇒y′=3c2e3x−25e2x(cosx+3sinx)−15e2x(−sinx+3cosx)⇒{y(0)=c1+c2−15=1y′(0)=3c2−25−35=2⇒{c1=15c2=1⇒y=15+e3x−15e2x(cosx+3sinx)
解答:{x′−2y′+3z=0⋯(1)x−4y′+3z′=t⋯(2)x−2y′+3z′=−1⋯(3),(3)−(2)⇒2y′=−1−t⇒2L{y′}=L{−1−t}⇒2sY(s)=−1s−1s2⇒Y(s)=−12s2−12s3⇒y(t)=L−1{Y(s)}=−12t−14t2⇒y′=−12−12t⇒2y′=−1−t⇒{x′+3z=−1−t⋯(1′)x+3z′=−2−t⋯(3′)⇒{L{x′+3z}=L{−1−t}L{x+3z′}=L{−2−t}⇒{sX(s)+3Z(s)=−1s−1s2⋯(4)X(s)+3sZ(s)=−2s−1s2⋯(5)⇒s(5)−(4)=(3s2−3)Z(s)=−2+1s2⇒Z(s)=−23(s2−1)+1s2(s2−1)⇒X(s)=−2s−1s2+2s(s2−1)−3s(s2−1)⇒{x(t)=L−1{X(s)}=−t+1−12(et+e−t)z(t)=L−1{Z(s)}=−t+16(et−e−t)⇒{x(t)=−t+1−12(et+e−t)y(t)=−12t−14t2z(t)=−t+16(et−e−t)
解答:{y′−y/x=2x2y(1)=4⇒{x0=1y0=4f(x,y)=2x2+y/x⇒yi+1=yi+hf(xi,yi)⇒{y1=5.2y2=6.64y3=8.37y4=10.44y5=12.9又y′−yx=2x2⇒y′x−yx2=2x⇒(yx)′=2x⇒yx=x2+c1y(1)=4⇒41=1+c1⇒c1=3⇒y=x3+3x⇒{y(1.2)=5.328y(1.4)=6.944y(1.6)=8.896y(1.8)=11.232y(2)=14⇒ixiapprox yiexact yi11.25.25.32821.46.646.94431.68.378.89641.810.4411.2325212.914

解答:f(−x)=f(x)⇒f is even⇒bn=0a0=16∫3−3x2dx=13∫30x2dx=3an=13∫3−3x2cosnπ3xdx=36n2π2(−1)n⇒f(x)=a0+∞∑n=1ancosnπ3x⇒f(x)=3+∞∑n=136n2π2(−1)ncosnπ3x

沒有留言:
張貼留言