2024年1月1日 星期一

111年台科大自動控制碩士班-工程數學詳解

 國立臺灣科技大學111學年度碩士班招生試題

系所組別:自動化及控制
科         目:工程數學

解答(1)Bernoulli D.E.v=y13=y2v=2yy3y=12y3v12y3v+yx=3x2y312y2v+1x=3x2y212vv+1x=3x2vv2xv=6x2vx22x3v=6(vx2)=6vx2=6x+c1v=1y2=6x3+c1x2y=±16x3+c1x2(2)y3y=0yh=c1+c2e3xLet {y1=1y2=e3xW=|y1y2y1y2|=3e3xyp=e3x2e2xsinx3e3xdx+e3x2e2xsinx3e3xdxyp=15e2x(cosx+3sinx)y=yh+yp=c1+c2e3x15e2x(cosx+3sinx)y=3c2e3x25e2x(cosx+3sinx)15e2x(sinx+3cosx){y(0)=c1+c215=1y(0)=3c22535=2{c1=15c2=1y=15+e3x15e2x(cosx+3sinx)

解答{x2y+3z=0(1)x4y+3z=t(2)x2y+3z=1(3),(3)(2)2y=1t2L{y}=L{1t}2sY(s)=1s1s2Y(s)=12s212s3y(t)=L1{Y(s)}=12t14t2y=1212t2y=1t{x+3z=1t(1)x+3z=2t(3){L{x+3z}=L{1t}L{x+3z}=L{2t}{sX(s)+3Z(s)=1s1s2(4)X(s)+3sZ(s)=2s1s2(5)s(5)(4)=(3s23)Z(s)=2+1s2Z(s)=23(s21)+1s2(s21)X(s)=2s1s2+2s(s21)3s(s21){x(t)=L1{X(s)}=t+112(et+et)z(t)=L1{Z(s)}=t+16(etet){x(t)=t+112(et+et)y(t)=12t14t2z(t)=t+16(etet)

解答{yy/x=2x2y(1)=4{x0=1y0=4f(x,y)=2x2+y/xyi+1=yi+hf(xi,yi){y1=5.2y2=6.64y3=8.37y4=10.44y5=12.9yyx=2x2yxyx2=2x(yx)=2xyx=x2+c1y(1)=441=1+c1c1=3y=x3+3x{y(1.2)=5.328y(1.4)=6.944y(1.6)=8.896y(1.8)=11.232y(2)=14ixiapprox yiexact yi11.25.25.32821.46.646.94431.68.378.89641.810.4411.2325212.914

解答A=[3432]=[14311][1006][37473737]Y=AYY=eAtY0=[14311][et00e6t][37473737][61]=[14311][et00e6t][23]=[14311][2et3e6t]=[2et+4e6t2et+3e6t]Y=[2et+4e6t2et+3e6t]



解答f(x)=f(x)f is evenbn=0a0=1633x2dx=1330x2dx=3an=1333x2cosnπ3xdx=36n2π2(1)nf(x)=a0+n=1ancosnπ3xf(x)=3+n=136n2π2(1)ncosnπ3x


解答o={(1,1),(1,2),,(1,6),(2,1),(2,2),,(2,6),(3,1),(3,2),,(3,6),,(6,6)}XP(X)21/3632/3643/3654/3665/3676/3685/3694/36103/36112/36121/36{EX=xip(xi)=7EX2=x2ip(xi)=329/6{μ(X)=7σ(X)=EX2(EX)2=210/6=2.415{μ(X)=7σ(X)=2.415

======================== END ========================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言