國立成功大學111學年度碩士班招生考試
系所: 系統及船舶機電工程學系
科目: 工程數學
解答: {y′1=2y1−4y2+u(t−2)ety′2=y1−3y2−u(t−2)et⇒{L{y′1}=L{2y1−4y2+u(t−2)et}L{y′2}=L{y1−3y2−u(t−2)et}⇒{sY1(s)−3=2Y1(s)−4Y2(s)+e−2(s−1)s−1sY2(s)=Y1(s)−3Y2(s)−e−2(s−1)s−1⇒{Y1(s)=3s−2−4s−2Y2(s)+e−2(s−1)(s−1)(s−2)Y2(s)=1s+3Y1(s)−e−2(s−1)(s−1)(s+3)⇒{Y1(s)=3(s+3)(s+2)(s−1)+(s+7)(s−3)(s−1)2(s+2)(s+3)e−2(s−1)Y2(s)=3(s−3)(s+2)(s+3)(s−1)−(s−3)2(s−1)2(s+2)(s+3)e−2(s−1)⇒{y1(t)=L−1{Y1(s)}y2(t)=L−1{Y2(s)⇒{y1(t)=2et+e−2t+u(t−2)18e2(−24tet−2+27e−3(t−2)+71et−2−50e−2(t−2))y2(t)=−12et+5e−2t−92e−3t−u(t−2)e236(12tet−2+100e−2(t−2)−81e−3(t−2)−43et−2)

解答: f(t)={20<t<1t2/21<t<π/2sin(t)t>π/2⇒f(t)=2(u(t)−u(t−1))+12t2(u(t−1)−u(t−π2))+sin(t)u(t−π2)=2u(t)+12(t2−4)u(t−1)+(sint−12t2)u(t−π2)
解答: 先求齊次解,令y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″−xy′−3y=m(m−1)xm−mxm−3xm=(m2−2m−3)xm=0⇒m2−2m−3=0⇒(m−3)(m+1)=0⇒m=−1,3⇒yh=c1x−1+c2x3yp=Ax2+Bx+C⇒y′p=2Ax+B⇒y″p=2A⇒x2y″−xy′−3y=2Ax2−2Ax2−Bx−3Ax2−3Bx−3C=−3Ax2−4Bx−3C=4x2⇒{A=−4/3B=C=0⇒yp=−43x2⇒y=yh+yp⇒y=c1x+c2x3−43x2

解答: 4x21+6x1x2−4x22=[x1,x2][433−4][x1x2]≡xtAx又A=[3/√10−1/√101/√103/√10][500−5][3/√101/√10−1/√103/√10]=QDQT⇒xtAx=≡xtQDQtx=(Qtx)tD(Qtx)≡(x′)tDx′⇒4x21+6x1x2−4x22=5x′21−5x′22=5⇒x′21−x′22=1為一雙曲線

解答: S:r=[u,v,3u−2v]⇒z−3x+2y=0⇒NdS=[−3,2,1]⇒F⋅NdS=3x2+2y2⇒Flux integral =∫3−3∫203x2+2y2dxdy=∫3−38+4y2dy=2∫308+4y2dy=2×60=120
=================== END =========================
解題僅供參考,其它歷年試題及詳解
第一題的y_1(t)&y_2(t)的u(t-2)中的e^t 係數都有誤 還麻煩勘誤一下了!
回覆刪除已修訂,謝謝!
刪除請問第四題是用到甚麼概念
回覆刪除