國立成功大學111學年度碩士班招生考試
系所: 系統及船舶機電工程學系
科目: 工程數學
解答: {y′1=2y1−4y2+u(t−2)ety′2=y1−3y2−u(t−2)et⇒{L{y′1}=L{2y1−4y2+u(t−2)et}L{y′2}=L{y1−3y2−u(t−2)et}⇒{sY1(s)−3=2Y1(s)−4Y2(s)+e−2(s−1)s−1sY2(s)=Y1(s)−3Y2(s)−e−2(s−1)s−1⇒{Y1(s)=3s−2−4s−2Y2(s)+e−2(s−1)(s−1)(s−2)Y2(s)=1s+3Y1(s)−e−2(s−1)(s−1)(s+3)⇒{Y1(s)=3(s+3)(s+2)(s−1)+(s+7)(s−3)(s−1)2(s+2)(s+3)e−2(s−1)Y2(s)=3(s−3)(s+2)(s+3)(s−1)−(s−3)2(s−1)2(s+2)(s+3)e−2(s−1)⇒{y1(t)=L−1{Y1(s)}y2(t)=L−1{Y2(s)⇒{y1(t)=2et+e−2t+u(t−2)18e2(−24tet−2+27e−3(t−2)+71et−2−50e−2(t−2))y2(t)=−12et+5e−2t−92e−3t−u(t−2)e236(12tet−2+100e−2(t−2)−81e−3(t−2)−43et−2)

解答: f(t)={20<t<1t2/21<t<π/2sin(t)t>π/2⇒f(t)=2(u(t)−u(t−1))+12t2(u(t−1)−u(t−π2))+sin(t)u(t−π2)=2u(t)+12(t2−4)u(t−1)+(sint−12t2)u(t−π2)
解答: 先求齊次解,令y=xm⇒y′=mxm−1⇒y″

解答: 4x_1^2+6x_1x_2-4x_2^2=[x_1,x_2] \begin{bmatrix}4 & 3 \\3 & -4 \end{bmatrix} \begin{bmatrix}x_1 \\x_2 \end{bmatrix} \equiv \textbf x^t A \textbf x\\ 又A= \begin{bmatrix}3/\sqrt{10} & -1/\sqrt{10} \\1/\sqrt{10} & 3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 5 & 0 \\0 & -5 \end{bmatrix} \begin{bmatrix}3/\sqrt{10} & 1/\sqrt{10} \\-1/\sqrt{10} & 3/\sqrt{10} \end{bmatrix} =QDQ^T \\ \Rightarrow \textbf x^t A \textbf x =\equiv \textbf x^t QDQ^t \textbf x =(Q^t\textbf x)^tD(Q^t \textbf x) \equiv (\textbf{x}')^t D\textbf{x}' \\ \Rightarrow 4x_1^2+6x_1x_2-4x_2^2=5x_1'^2-5x_2'^2=5 \Rightarrow \bbox[red,2pt]{x_1'^2-x_2'^2=1為一雙曲線}

解答: S:r=[u,v,3u-2v] \Rightarrow z-3x+2y=0 \Rightarrow NdS=[-3,2,1] \Rightarrow F\cdot NdS =3x^2+2y^2 \\ \Rightarrow \text{Flux integral =}\int_{-3}^3 \int_0^2 3x^2+2y^2\,dxdy =\int_{-3}^3 8+4y^2\,dy =2\int_0^38+4y^2\,dy \\=2\times 60=\bbox[red, 2pt]{120}
=================== END =========================
解題僅供參考,其它歷年試題及詳解
第一題的y_1(t)&y_2(t)的u(t-2)中的e^t 係數都有誤 還麻煩勘誤一下了!
回覆刪除已修訂,謝謝!
刪除請問第四題是用到甚麼概念
回覆刪除