Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年1月13日 星期六

111年北科大機械碩士班乙組-工程數學詳解

 國立臺北科技大學111學年度碩士班招生考試

系所組別 :1120機械工程系機電整合碩士班乙組
第一節 工程數學 試題 

解答:{P(x,y)=1+2ex/yQ(x,y)=2ex/y(1xy)Py=2xy2ex/y=QxExactΦ(x,y)=(1+2ex/y)dx=2ex/y(1xy)dyΦ=x+2yex/y+ρ(y)=2yex/y+ϕ(x)Φ=x+2yex/y+c1=0
解答:{P(x,y)=4yQ(x,y)=x+12xy{Py=4Qx=1+12yPyQx Non-exactQxPyP=12y34y=334yu=(334y)u1udu=(334y)dylnu=3y34lnyu=e3yy3/4{uP=4y1/4e3yuQ=e3yy3/4(x+12xy)(uP)y=y3/4e3y+12y1/4e3y=(uQ)xExactΦ(x,y)=4y1/4e3ydx=e3yy3/4(x+12xy)dyΦ=4xy1/4e3y+ρ(y)=4xy1/4e3y+ϕ(x)4xy1/4e3y+c1=0

解答:y+y=0yh=c1cosx+c2sinx{y1=cosxy2=sinxW=|y1y2y1y2|=1yp=cosxsinx(xsinx)dx+sinxcosx(xsinx)dx=cosx(14x214xsin(2x)18cos(2x))+sinx(18sin(2x)14xcos(2x))=14x2cosx+18cos(2xx)+14xsin(2xx)=14x2cosx+18cosx+14xsinxy=yh+ypy=c3cosx+c2sinx14x2cosx+14xsinx
解答:f(t)={0,t<6t,t6f(t)=tu(t6)L{f(t)}=L{tu(t6)}=ddsL{u(t6}=dds(e6ss)=6e6ss+e6ss2L{y+4y}=s2Y(s)sy(0)y(0)+4Y(s)=(s2+4)Y(s)=6e6ss+e6ss2Y(s)=6e6ss(s2+4)+e6ss2(s2+4)y(t)=L1{Y(s)}=L1{6e6ss(s2+4)+e6ss2(s2+4)}=u(t6)(3232cos(2(t6)))+u(t6)(t6418sin(2(t6)))y(t)=u(t6)(t432cos(2t12)18sin(2t16))




解答:A=[223216120]det(AλI)=(λ+3)2(λ5)=0λ=3,5λ1=3(Aλ1I)v=0[123246123][x1x2x3]=0x2+2x2=3x3v=x2[210]+x3[301],v1=[210],v2=[301]λ2=5(Aλ2I)v=0[723246125][x1x2x3]=0{x1+x3=0x2+2x3=0v=x3[121],v3=[121]eigenvalues: 3,5, eigenvectors: [210],[301],[121]
解答:u(x,t)=X(x)T(t){PDEut=k2ux2XT=kXTBCu(0,t)=u(L,t)=0X(0)=X(L)=0ICu(x,0)=AXT=kXTTkT=XX=λCase I λ=0.X=0X=c1x+c2BC:{X(0)=0X(L)=0{c2=0c1L+c2=0c1=c2=0X=0Cases II λ>0.λ=ρ2(ρ>0)Xρ2X=0X=c1eρx+c2eρxBC:{X(0)=0X(L)=0{c1+c2=0c1eρL+c2eρL=0c1eρLc1eρL=0c1(e2ρL1)=0c1=0c2=0X=0Cases III λ<0.λ=ρ2(ρ>0)X+ρ2X=0X=c1cos(ρx)+c2sin(ρx)BC:{X(0)=0X(L)=0{c1=0c1cos(ρL)+c2sin(ρL)=0c2sin(ρL)=0sin(ρL)=0ρ=nπLX=c2sin(nπx/L),nNT+ρ2kT=0T=c3eρ2kt=c3en2π2kt/L2u(x,t)=XT=c2c3en2π2kt/L2sin(nπx/L)=n=1anen2π2kt/L2sin(nπx/L)IC: u(x,0)=n=1ansin(nπx/L)=Aan=2LL0Asin(nπx/L)dx=2Anπ[cos(nπ)1]=2Anπ(1(1)n)u(x,t)=n=12Anπ(1(1)n)en2π2kt/L2sin(nπx/L)
=========================== END ===========================
解題僅供參考, 其他歷年試題及詳解

沒有留言:

張貼留言