Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年1月30日 星期二

111年成大資源工程碩士班-工程數學詳解

 國立成功大學111學年度碩士班招生考試

系所:資源工程學系
科目:工程數學

解答:(a)y+y=0yh=c1cosx+c2sinxyp=Acos(2x)+Bsin(2x)yp=2Asin(2x)+2Bcos(2x)yp=4Acos(2x)4Bsin(2x)yp+yp=3Acos(2x)3Bsin(2x)=sin(2x){A=0B=1/3yp=13sin(2x)y=yh+ypy=c1cosx+c2sinx13sin(2x)y=c1sinx+c2cosx23cos(2x){y(0)=c1=0y(0)=c22/3=0c2=23y=23sinx23sin(2x)(b)y=y+exyy=ex integration factor I(x)=e1dx=exexyexy=1(exy)=1exy=x+c1y=xex+c1exy(0)=c1=2y=xex+2ex

解答:(a)0e3t+2estdt=e20e(3s)tdt=e2[13se(3s)t]|0=e2s3(b)L1{s+6s2+4s+20}=L1{(s+2)+4(s+2)2+42}=e2t(cos4t+sin4t)


解答:(a-1)[1342211312311301]R22R1R2,R3R1R3,R4R1R4[1342077701110041]R1+3R3R1,R27R3R2[1011000001110041]R3R3,R4/4R4[1011000001110011/4]R1R4R1,R2R3[1005/4011100000011/4]R2R4R2,R3R4[1005/40103/40011/40000](a-2)rref(A)rank(A)3(a-3)rank(A)=11+3+1=4(b)B=[010100001]det


解答:\textbf{(a)} \; \vec F(x,y,z)=(3xy^2,-2yz^2, 4x^2z) \Rightarrow \text{div }\vec F=\frac{\partial }{\partial x}3xy^2 +\frac{\partial  }{\partial y}(-2yz^2) +\frac{\partial  }{\partial z} 4x^2z \\\quad =3y^2-2z^2+4x^2  \Rightarrow \text{div }\vec F(-1,2,3)=12-18+4= \bbox[red, 2pt]{-2} \\\textbf{(b)} \; \cases{F=x+y^2+z^3\\ \vec v=(2,2,1)} \Rightarrow \cases{(F_x, F_y,F_z)= (1,2y,3z^2)\\ \vec n={\vec v\over \Vert \vec v\Vert} =({2\over 3}, {2\over 3}, {1\over 3})}  \Rightarrow D_{\vec n}F(x,y,z) =(1,2y,3z^2) \cdot ({2\over 3}, {2\over 3}, {1\over 3})\\\quad  ={2\over 3}+{4y\over 3}+z^2 \Rightarrow D_{\vec n}F(3,2,-1) ={2\over 3}+{8\over 3}+1 = \bbox[red, 2pt]{13\over 3}\\ \textbf{(c)} \; 假設C為平滑曲線所組合而成的封閉曲線, 所圍區域為R,\\而P(x,y)及Q(x,y)為連續且一次偏導數也連續,則\\ \oint_C Pdx+Qdy = \iint_R {\partial Q\over \partial x} -{\partial P\over \partial y}dA
解答:\textbf{(a)} \; f(x)為奇函數 \Rightarrow a_n=0,而b_n= \int_{-1}^0 -\sin(n\pi x)\,dx + \int_0^1 \sin(n\pi x)\,dx ={2\over n\pi}(1-(-1)^n)\\\quad  \Rightarrow f(x)= \bbox[red, 2pt]{\sum_{n=1}^\infty {2\over n\pi}(1-(-1)^n) \sin(n\pi x)} \\\textbf{(a)} \; f(x)=e^{-x}, x\gt 0 \Rightarrow A(\alpha)=\int_0^\infty e^{-x} \cos(\alpha x)\,dx ={1\over 1+\alpha^2} \\ \quad \Rightarrow \bbox[red, 2pt]{ f(x)={2\over \pi}\int_0^\infty {\cos (\alpha x)\over 1+\alpha^2} \,dx} \\\textbf{(c)} \; F(\omega) =\int_{-\infty}^\infty e^{-|x|} e^{-j\omega x}\,dx =2\int_0^\infty e^{-x} e^{-j\omega x}\,dx = 2\int_0^\infty   e^{-(j\omega+1) x}\,dx =2 \left. \left[ -{1\over j\omega +1} e^{-(j\omega+1)x}\right] \right|_0^\infty\\ \qquad =\bbox[red, 2pt]{2\over j\omega +1}

解答:\text{for example, RLC circuit}

========================= END =========================

解題僅供參考,其他歷年試題及詳解


沒有留言:

張貼留言