國立臺灣科技大學111學年度碩士班招生考試
系所組別:機械工科甲乙丙丁組
科目:工程數學
解答:(a)y″−16y=0⇒yh=c1e4x+c2e−4xyp=Axe4x⇒y′p=Ae4x+4Axe4x⇒y″p=8Ae4x+16Axe4x⇒y″p−16yp=8Ae4x=2e4x⇒A=14y=yh+yp⇒y=c1e4x+c2e−4x+14xe4x(b)y″+y=0⇒yh=c1cosx+c2sinxLet {y1=cosxy2=sinx⇒W=|y1y2y′1y′2|=|cosxsinx−sinxcosx|=1⇒yp=−cosx∫sinx(4x+10sinx)dx+sinx∫cosx(4x+10sinx)dx=−cosx(5x+4sinx−4xcosx−5sinxcosx)+sinx(4xsinx−5cos2x+4cosx)=−5xcosx+4x⇒y=yh+yp=c1cosx+c2sinx−5xcosx+4x⇒y′=−c1sinx+c2cosx−5cosx+5xsinx+4⇒{y(π)=−c1+9π=0y′(π)=−c2+9=2⇒{c1=9πc2=7⇒y=9πcosx+7sinx−5xcosx+4x解答:→a1=→v1=(111−1)⇒→e1=→a1‖→a1‖=(121212−12)→a2=→v2−(→v2⋅→e1)→e1=(94−34−3434)⇒→e2=→a2‖→a2‖=(√32−√36−√36√36)→a3=→v3−(→v3⋅→e1)→e1−(→v3⋅→e2)→e2=→v3−→e1+√3→e2=(0112)⇒→e3=→a1‖→a3‖=(0√66√66√63)⇒orthonormal vector set ={(121212−12),(√32−√36−√36√36),(0√66√66√63)}
解答:L−1{s+3(s+2)(s2+2s+2}=L−1{12(s+2)+−s+22(s2+2s+2)}=L−1{12(s+2)−12⋅s+1(s+1)2+1+32⋅1(s+1)2+1}=12e−2t−12e−tcost+32e−tsint
解答:A=[2012−10−100]2R3+R1→R1,2R3+R2→R2→[0010−10−100]R1↔R3→[−1000−10001]−R1,−R2→[100010001]⇒rank(A)=3⇒linearly indepententdet(A−λI)=−(λ−1)2(λ+1)=0⇒λ=1,−1λ1=1⇒(A−λ1I)v=0⇒[1012−20−10−1][x1x2x3]=0⇒{x1+x3=0x2+x3=0⇒v=[−k−kk],k∈R,取v1=[−1−11]λ2=−1⇒(A−λ2I)v=0⇒[301200−101][x1x2x3]=0⇒{x1=0x3=0⇒v=[0k0],k∈R,取v2=[010]⇒eigenvalues: 1,−1, eigenvectors: [−1−11],[010],and the dimension of the eigenspace of A=2
解答:cn=12π∫π−πe−xeinxdx=12π[1in−1e(in−1)x]|π−π=12π(in−1)(einπ⋅e−π−e−inπ⋅eπ)=12π(in−1)(−1)n(e−π−eπ)⇒f(x)=∞∑n=−∞cne−inx, where cn=12π(in−1)(−1)n(e−π−eπ)
解答:T(x,y)=X(x)Y(y)⇒∇2T(x,y)=0⇒X″Y+XY″=0{T(0,y)=1T(∞,y)=0∂T∂y(x,0)=0T(x,1)=0⇒{X(0)Y(y)=1X(∞)Y(y)=0⇒X(x)Y′(0)=0T(x)Y(1)=0⇒{X(∞)=0Y′(0)=0Y(1)=0X″Y+XY″=0⇒X″X=−Y″Y=μCase I: μ=0⇒Y″=0⇒Y=ay+b⇒Y′=a⇒{Y′(0)=0Y(1)=0⇒{a=0a+b=0⇒a=b=0⇒Y=0Case II: μ<0⇒假設μ=−ρ2(ρ>0)⇒Y″−ρ2Y=0⇒Y=c1eρy+c2e−ρy⇒Y′=c1ρeρy−c2ρe−ρy⇒{Y′(0)=0Y(1)=0⇒{(c1−c2)ρ=0c1eρ+c2e−ρ=0⇒{c1=c2c1e2ρ+c2=0⇒c1(e2ρ+1)=0⇒c1=c2=0⇒Y=0Case III: μ>0⇒假設μ=ρ2(ρ>0)⇒Y″+ρ2Y=0⇒Y=Acosρx+Bsinρx⇒Y′=−Aρsinρx+Bρcosρx⇒{Y′(0)=0Y(1)=0⇒{Bρ=0Acosρ+Bsinρ=0⇒B=0⇒Acosρ=0⇒cosρ=0⇒ρ=2n−12π,n=1,2,…⇒Y=Acos2n−12πy,n=1,2,…X″X=μ=ρ2⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx,又X(∞)=0⇒c1=0⇒X=c2e−ρx=c2e−(2n−1)x/2⇒T=XY=c2e−(2n−1)x/2Acos2n−12πy,n=1,2,…⇒T=∞∑n=1ane−(2n−1)x/2cos2n−12πyT(0,y)=1⇒∞∑n=1ancos2n−12πy=1⇒an=∫20cos2n−12πydy=−4(2n−1)π⇒T(x,y)=∞∑n=1−4(2n−1)πe−(2n−1)x/2cos2n−12πy
==================== END ===========================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言