Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2024年1月4日 星期四

111年北科大自動化碩士班-工程數學詳解

 國立臺北科技大學111學年度碩士班招生考試

系所組別: 自動化科技研究所
科目:工程數學


解答:(1){[1234]1=[213/21/2][1004]1=[1001/4][1234]+[1004]=[2238]{[2238]1=[4/51/53/101/5][213/21/2]+[1001/4]=[113/21/4]{A=[1234]B=[1004]A1+B1(A+B)1False(2)A is orthogonalAAT=I(det(A))2=1det(A)0rank(A)=nTrue(3)rank(A)=nnm and b is n×1bcolumn space of A there is a solutionTrue(4)2(423)3(231)=(253)linearly dependentTrue

2. (20%) In a certain town 30 percent of the married women get divorced each year and 20 percent of the single women get married each year. There are 8000 married women and 2000 single women and the total population remains constant. Find the number of married women and single women after 5 years. What will be the long-range prospects if these percentages of marriages and divorces continue indefinitely into the future?
解答:{x:y:[xi+1yi+1]=[70%20%30%80%][xiyi],{x0=8000y0=2000A=[70%20%30%80%]=[12311][12001][35253535][x5y5]=A5[x0y0]=[12311][(12)50015][35253535][80002000]=[671603180931604980][80002000]=[41255875][xy]=A[x0y0]=[12311][(12)001][35253535][80002000]=[25253535][80002000]=[40006000]{41255875,{40006000
解答:(1)A=[3081]det(AλI)=λ22λ3=(λ+1)(λ3)=0λ=1,3λ1=1(Aλ1I)v=0[4080][x1x2]=0x1=0v=[0x2],v1=[01]λ2=3(Aλ2I)v=0[0084][x1x2]=02x1=x2v=[x12x1],v2=[12]the characteristic equation: λ22λ3=0,eigenvalues: 1,3 ,and associated eigenvectors: [01],[12](2)A=[2152]det(AλI)=λ2+1=0λ=±iλ1=i(Aλ1I)v=0[2i152i][x1x2]=05x1+(2i)x2=0v=[(i2)x2/5x2],v1=[i25]λ2=i(Aλ2I)v=0[2+i152+i][x1x2]=05x1+(2+i)x2=0v=[(i2)x2/5x2],v2=[i25]the characteristic equation: λ2+1=0,eigenvalues: i,i ,and associated eigenvectors: [i25],[i25]



解答:,y

解答:L\{ y''\}+ L\{y\} =L\{ \delta(x-1)\} \Rightarrow s^2Y(s)-sy(0)-y'(0)+ Y(s)= e^{-s} \\ \Rightarrow (s^2+1)Y(s)=e^{-s}+y'(0) \Rightarrow Y(s)={e^{-s} \over s^2+1} +{y'(0)\over s^2+1}\\ \Rightarrow y(x)=L^{-1}\{ {e^{-s} \over s^2+1}\} +L^{-1}\{ {y'(0)\over s^2+1}\} =u(x-1)\sin(x-1)+ y'(0)\sin(x) \\ \Rightarrow y(2)=\sin 1+y'(0)\sin 2=0 \Rightarrow y'(0)=-{\sin 1\over \sin 2}\\ \Rightarrow \bbox[red, 2pt]{y= u(x-1)\sin(x-1)-{\sin 1\over \sin 2}\sin x}

==================== END ===========================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言