國立臺北科技大學111學年度碩士班招生考試
系所組別: 自動化科技研究所
科目:工程數學
解答:(1){[1234]−1=[−213/2−1/2][1004]−1=[1001/4]⇒[1234]+[1004]=[2238]⇒{[2238]−1=[4/5−1/5−3/101/5][−213/2−1/2]+[1001/4]=[−113/2−1/4]由上可知{A=[1234]B=[1004]⇒A−1+B−1≠(A+B)−1⇒False(2)A is orthogonal⇒AAT=I⇒(det(A))2=1⇒det(A)≠0⇒rank(A)=n⇒True(3)rank(A)=n⇒n≤m and b is n×1⇒b∈column space of A⇒ there is a solution⇒True(4)2(423)−3(231)=(2−53)⇒linearly dependent⇒True
2. (20%) In a certain town 30 percent of the married women get divorced each year and 20 percent of the single women get married each year. There are 8000 married women and 2000 single women and the total population remains constant. Find the number of married women and single women after 5 years. What will be the long-range prospects if these percentages of marriages and divorces continue indefinitely into the future?
解答:令{x:已婚婦女數y:單身婦女數⇒[xi+1yi+1]=[70%20%30%80%][xiyi],其中{x0=8000y0=2000令A=[70%20%30%80%]=[−12311][12001][−35253535]⇒[x5y5]=A5[x0y0]=[−12311][(12)50015][−35253535][80002000]=[671603180931604980][80002000]=[41255875]⇒[x∞y∞]=A∞[x0y0]=[−12311][(12)∞001∞][−35253535][80002000]=[25253535][80002000]=[40006000]⇒五年後{已婚婦女4125人單身婦女5875人,長期展望{已婚婦女4000人單身婦女6000人
解答:(1)A=[308−1]⇒det(A−λI)=λ2−2λ−3=(λ+1)(λ−3)=0⇒λ=−1,3λ1=−1⇒(A−λ1I)v=0⇒[4080][x1x2]=0⇒x1=0⇒v=[0x2],取v1=[01]λ2=3⇒(A−λ2I)v=0⇒[008−4][x1x2]=0⇒2x1=x2⇒v=[x12x1],取v2=[12]⇒the characteristic equation: λ2−2λ−3=0,eigenvalues: −1,3 ,and associated eigenvectors: [01],[12](2)A=[−2−152]⇒det(A−λI)=λ2+1=0⇒λ=±iλ1=i⇒(A−λ1I)v=0⇒[−2−i−152−i][x1x2]=0⇒5x1+(2−i)x2=0⇒v=[(i−2)x2/5x2],取v1=[i−25]λ2=−i⇒(A−λ2I)v=0⇒[−2+i−152+i][x1x2]=0⇒5x1+(2+i)x2=0⇒v=[(−i−2)x2/5x2],取v2=[−i−25]⇒the characteristic equation: λ2+1=0,eigenvalues: i,−i ,and associated eigenvectors: [i−25],[−i−25]
解答:L\{ y''\}+ L\{y\} =L\{ \delta(x-1)\} \Rightarrow s^2Y(s)-sy(0)-y'(0)+ Y(s)= e^{-s} \\ \Rightarrow (s^2+1)Y(s)=e^{-s}+y'(0) \Rightarrow Y(s)={e^{-s} \over s^2+1} +{y'(0)\over s^2+1}\\ \Rightarrow y(x)=L^{-1}\{ {e^{-s} \over s^2+1}\} +L^{-1}\{ {y'(0)\over s^2+1}\} =u(x-1)\sin(x-1)+ y'(0)\sin(x) \\ \Rightarrow y(2)=\sin 1+y'(0)\sin 2=0 \Rightarrow y'(0)=-{\sin 1\over \sin 2}\\ \Rightarrow \bbox[red, 2pt]{y= u(x-1)\sin(x-1)-{\sin 1\over \sin 2}\sin x}
==================== END ===========================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言