Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年1月18日 星期四

111年高科大機械碩士班-工程數學(甲)詳解

國立高雄科技大學111學年度碩士班招生考試

系所別: 機械工程, 組別:甲組
考科:工程數學(甲), 考科代碼: 2022

解答: xy2y=y3x3yyx2=x2y2v=y3v=3y2y13xv=vx3v3xv=3x2I(x)=e(3/x)dx=1x31x3v3x4v=3x(vx3)=3xvx3=3xdx=3lnx+c1v=y3=3x3lnx+c1x3y(1)=28=c1y3=3x3lnx+8x3y=x33lnx+8
解答: ,y2y+y=0yh=c1ex+c2xex variation of parameters ,{y1=exy2=xexW=|y1y2y1y2|=|exxexexex+xex|=e2xyp=exxex(4x23+ex/x)e2xdx+xexex(4x23+ex/x)e2xdx=ex4x33x+exexdx+xex4x23+ex/xexdx=xex+4x3+12x2+21x+21+xexlnx4x38x25x=xexlnxxex+4x2+16x+21y=yh+ypy=c1ex+c3xex+xexlnx+4x2+16x+21
解答: {x1=3x1+2(x2x1)(1)x2=2(x2x1)(2)x1+x2=3x1L{x1}+L{x2}=3L{x1}s2X1(s)sx1(0)x1(0)+s2X2(s)sx2(0)x2(0)=3X1(s)s2X1(s)1+s2X2(s)s=3X1(s)X2(s)=s+1s2s2+3s2X1(s)(3)(2)L{x2}=2(L{x2}L{x1})s2X2(s)s=2X2(s)+2X1(s)X2(s)=2s2+2X1(s)+ss2+2(4)(3)=(4)s+1s2s2+3s2X1(s)=2s2+2X1(s)+ss2+2X1(s)=s2+2s+2s4+7s2+6x1(t)=L1{X1(s)x1=25cost+15sint25cos(6t)+2615sin(6t)x1=25sint+15cost+265sin(6t)+45cos(6t)x1=25cost15sint+125cos(6t)456sin(6t)=5x1+2x2x2=12(x1+5x1)x2=45cost+25sint+15cos(6t)615sin(6t)
解答: {u=(u1,u2,,un)v=(v1,v2,,vn){uv=u1v1+u2v2++unvnu×v=(u2v3u3v2,u3v4u4v3,,un2vn1un1vn2){=12u×vθcosθ=uvuv
解答: det
 

==================== END ===========================

解題僅供參考,其他歷年試題及詳解

3 則留言: