Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年1月25日 星期四

112年中山大學通訊所-機率詳解

國立中山大學112學年度碩士班暨碩士在職專班招生考試試題

科目名稱:機率【通訊所碩士班甲組】

一、單選題

解答:A=x17+14x+11=33x=9933=311,(C)
解答:,(56)7,(D):
解答:P(AB)=P(A)=P(A)P(B)P(A)(1P(B))=0{P(A)=0P(B)=1P(A)=0P(B)=1,(E)
解答:(D)p(x)=1n(n+1)(1+2++n)=1n(n+1)n(n+1)2=121,(D)
解答:F(t)=P(Xt)=1P(X>t)=112eλt12eμtf(X=t)=ddtF(t)=12λeλt+12μeμtE(X)=0t(12λeλt+12μeμt)dt=[12λ(eλt(λt+1)λ2)+12μ(eμt(μt+1)μ2)]|0=12(1λ+1μ),(B)
解答:XN(0,1)pdf:f(x)=12πex2/2f(A)×:g(x)=xcosxg(x)=g(x)ggfE[g(x)]=0(B)×:g(x)=sinxggfE[g(x)]=0(C):E[ex]=ex12πex2/2dx=e12πe(x1)2/2dx=e(D)×:g(x)=x1+x2ggfE[g(x)]=0(C)
解答:(A):P(Yy)=P(ln(1X)y)P(ln(1X)y)=P(X1ey)y01ey0P(X1ey)=1ey01dx=1ey(B):y01ey0P(X1ey0)=0(C):P(Zz)=P(Xnz)=P(Xnz)=nz01dx=nz(D)×:P(Xnz)=nz01dx=nz(D)
解答:{Xexp(1)Yexp(1){fX(x)=ex,x0fY(y)=ey,y0Z=max
解答:M_X(t)={e^t+e^{-t}\over 6}+{2\over 3} \Rightarrow \left. \frac{\text{d} }{\text{d}t}M_X(t) \right|_{t=0}= 0 \Rightarrow \left. \frac{\text{d}^2 }{\text{d}t^2}M_X(t) \right|_{t=0}= {1\over 3}\\ \Rightarrow E[X^n]=\left. \frac{\text{d}^n }{\text{d}t^n}M_X(t) \right|_{t=0}= \begin{cases}0,& n\text{ is odd} \\1/3,& n \text{ is even}\end{cases} \Rightarrow \cases{(A) \bigcirc: E[X^{1002}]=1/3\\ (B) \times:E[X^{997}]=0\\ (C)\times: E[X^{1008}]=1/3\\ (D) \times:E[X^{1008}]=1/3\\ }\\ 故選\bbox[red, 2pt]{(A)}
解答:f(x,y)=2e^{-(x+y)},0\lt x\lt y\lt \infty \Rightarrow \cases{f_X(x)=\int_x^\infty 2e^{-(x+y)} \,dy =2e^{-2x} \\ f_Y(y)=\int_0^y2e^{-(x+y)}\,dx =2-2e^{-2y}} \\ (B)\bigcirc: f_X(x)f_Y(y)=4e^{-2x}-4e^{-2(x+y)} \ne f(x,y) \Rightarrow \text{ dependent}\\ 故選\bbox[red, 2pt]{(B)}

二、問答計算題

解答:A \text{ and }B \text{ are independent } \Rightarrow P(A\cap B) = P(A)P(B)\\ P(A\cap \bar B)=P(A)-P(A\cap B)= P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(\bar B) \\ \Rightarrow P(A\cap \bar B)= P(A) P(\bar B) \Rightarrow A,\bar B \text{ are independent}\bbox[red, 2pt]{ Q.E.D.}
解答:X\sim N(0,1) \Rightarrow f(x)={1\over \sqrt{2\pi}} e^{-x^2/2}\\ F_Y(y) =P(Y\le y) = P(e^X\le y)= P(X\le \ln y) = \int_{-\infty}^{\ln y}{1\over \sqrt{2\pi}} e^{-x^2/2} \,dx \\ \Rightarrow \text{ pdf of }Y:f_Y(y)=\frac{\text{d} }{\text{d}y} F_Y(y) = \bbox[red, 2pt]{{1\over y\sqrt{2\pi}} e^{-(\ln y)^2/2}}
解答:\textbf{(a)}\;\cases{X\sim N(0,1)\\ Y\sim N(0,1)} \Rightarrow Z=X/Y \sim \text{ Cauchy distribution } \Rightarrow \text{ pdf of }Z:\bbox[red, 2pt]{f_Z(z)={1\over \pi(z^2+1)}}\\\href{https://www.quora.com/If-X-N-0-1-and-Y-N-0-1-are-iid-random-variables-what-is-P-X-Y-t}{證明過程} \\\textbf{(b)}\;  \cases{X\sim N(0,1)\\ Y\sim N(0,1)} \Rightarrow \cases{E(X+Y)=0\\ E(X-Y)=0} \\\Rightarrow COV(X+Y,X-Y) =E((X+Y)(X-Y))-E(X+Y)E(X-Y)\\ =E(X^2-Y^2)-0\cdot 0 =E(X^2)-E(Y^2)=1-1=0 \Rightarrow X+Y\text{ and }X-Y \text{ are independent }\\\qquad \bbox[red, 2pt]{Q.E.D.}
解答:\textbf{(a)}\;X=-Y \Rightarrow Z=X+Y=0 \Rightarrow f_Z(z)=\bbox[red, 2pt]0\\ \textbf{(b)}\; X=Y \Rightarrow Z=X+Y= 2X \Rightarrow F_Z(z)= P(Z\le z)=P(2X\le z)= P(x\le z/2)\\ \quad = \int_{-\infty}^{z/2} {1\over \sqrt{2\pi}} e^{-x^2/2}\,dx \Rightarrow f_Z(z)={d\over dz}\int_{-\infty}^{z/2} {1\over \sqrt{2\pi}} e^{-x^2/2}\,dx = \bbox[red, 2pt]{{1\over 2\sqrt{2\pi}} e^{-z^2/8}}

======================== END =====================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言