國立中山大學112學年度碩士班暨碩士在職專班招生考試試題
科目名稱:機率【通訊所碩士班甲組】
一、單選題
解答:兩次都得A的人數=x⇒17+14−x+11=33⇒x=9⇒933=311,故選(C)解答:第八次的結果與前七次都不相同,因此機率為(56)7,故選(D)註:參考資料
解答:P(A∩B)=P(A)=P(A)P(B)⇒P(A)(1−P(B))=0⇒{P(A)=0P(B)=1也就是P(A)=0或P(B)=1,故選(E)
解答:(D)∑p(x)=1n(n+1)(1+2+⋯+n)=1n(n+1)⋅n(n+1)2=12≠1,故選(D)
解答:F(t)=P(X≤t)=1−P(X>t)=1−12e−λt−12e−μt⇒f(X=t)=ddtF(t)=12λe−λt+12μe−μt⇒E(X)=∫∞0t(12λe−λt+12μe−μt)dt=[12λ(−e−λt(λt+1)λ2)+12μ(−e−μt(μt+1)μ2)]|∞0=12(1λ+1μ),故選(B)
解答:X∼N(0,1)⇒pdf:f(x)=1√2πe−x2/2→f為偶函數(A)×:g(x)=xcosx⇒g(−x)=−g(x)⇒g為奇函數⇒g⋅f為奇函數⇒E[g(x)]=0(B)×:g(x)=sinx⇒g為奇函數⇒g⋅f為奇函數⇒E[g(x)]=0(C)◯:E[ex]=∫∞−∞ex⋅1√2πe−x2/2dx=√e∫∞−∞1√2πe−(x−1)2/2dx=√e(D)×:g(x)=x1+x2⇒g為奇函數⇒g⋅f為奇函數⇒E[g(x)]=0故選(C)
解答:(A)◯:P(Y≤y)=P(−ln(1−X)≤y)⇒P(ln(1−X)≥−y)=P(X≤1−e−y)若y≥0⇒1−e−y≥0⇒P(X≤1−e−y)=∫1−e−y01dx=1−e−y(B)◯:若y≤0⇒1−e−y≤0⇒P(X≤1−e−y≤0)=0(C)◯:P(Z≤z)=P(Xn≤z)=P(X≤n√z)=∫n√z01dx=n√z(D)×:P(X≤n√z)=∫n√z01dx=n√z故選(D)
解答:{X∼exp(1)Y∼exp(1)⇒{fX(x)=e−x,x≥0fY(y)=e−y,y≥0Z=max
解答:M_X(t)={e^t+e^{-t}\over 6}+{2\over 3} \Rightarrow \left. \frac{\text{d} }{\text{d}t}M_X(t) \right|_{t=0}= 0 \Rightarrow \left. \frac{\text{d}^2 }{\text{d}t^2}M_X(t) \right|_{t=0}= {1\over 3}\\ \Rightarrow E[X^n]=\left. \frac{\text{d}^n }{\text{d}t^n}M_X(t) \right|_{t=0}= \begin{cases}0,& n\text{ is odd} \\1/3,& n \text{ is even}\end{cases} \Rightarrow \cases{(A) \bigcirc: E[X^{1002}]=1/3\\ (B) \times:E[X^{997}]=0\\ (C)\times: E[X^{1008}]=1/3\\ (D) \times:E[X^{1008}]=1/3\\ }\\ 故選\bbox[red, 2pt]{(A)}
解答:f(x,y)=2e^{-(x+y)},0\lt x\lt y\lt \infty \Rightarrow \cases{f_X(x)=\int_x^\infty 2e^{-(x+y)} \,dy =2e^{-2x} \\ f_Y(y)=\int_0^y2e^{-(x+y)}\,dx =2-2e^{-2y}} \\ (B)\bigcirc: f_X(x)f_Y(y)=4e^{-2x}-4e^{-2(x+y)} \ne f(x,y) \Rightarrow \text{ dependent}\\ 故選\bbox[red, 2pt]{(B)}
二、問答計算題
解答:A \text{ and }B \text{ are independent } \Rightarrow P(A\cap B) = P(A)P(B)\\ P(A\cap \bar B)=P(A)-P(A\cap B)= P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(\bar B) \\ \Rightarrow P(A\cap \bar B)= P(A) P(\bar B) \Rightarrow A,\bar B \text{ are independent}\bbox[red, 2pt]{ Q.E.D.}解答:X\sim N(0,1) \Rightarrow f(x)={1\over \sqrt{2\pi}} e^{-x^2/2}\\ F_Y(y) =P(Y\le y) = P(e^X\le y)= P(X\le \ln y) = \int_{-\infty}^{\ln y}{1\over \sqrt{2\pi}} e^{-x^2/2} \,dx \\ \Rightarrow \text{ pdf of }Y:f_Y(y)=\frac{\text{d} }{\text{d}y} F_Y(y) = \bbox[red, 2pt]{{1\over y\sqrt{2\pi}} e^{-(\ln y)^2/2}}
解答:\textbf{(a)}\;\cases{X\sim N(0,1)\\ Y\sim N(0,1)} \Rightarrow Z=X/Y \sim \text{ Cauchy distribution } \Rightarrow \text{ pdf of }Z:\bbox[red, 2pt]{f_Z(z)={1\over \pi(z^2+1)}}\\\href{https://www.quora.com/If-X-N-0-1-and-Y-N-0-1-are-iid-random-variables-what-is-P-X-Y-t}{證明過程} \\\textbf{(b)}\; \cases{X\sim N(0,1)\\ Y\sim N(0,1)} \Rightarrow \cases{E(X+Y)=0\\ E(X-Y)=0} \\\Rightarrow COV(X+Y,X-Y) =E((X+Y)(X-Y))-E(X+Y)E(X-Y)\\ =E(X^2-Y^2)-0\cdot 0 =E(X^2)-E(Y^2)=1-1=0 \Rightarrow X+Y\text{ and }X-Y \text{ are independent }\\\qquad \bbox[red, 2pt]{Q.E.D.}
解答:\textbf{(a)}\;X=-Y \Rightarrow Z=X+Y=0 \Rightarrow f_Z(z)=\bbox[red, 2pt]0\\ \textbf{(b)}\; X=Y \Rightarrow Z=X+Y= 2X \Rightarrow F_Z(z)= P(Z\le z)=P(2X\le z)= P(x\le z/2)\\ \quad = \int_{-\infty}^{z/2} {1\over \sqrt{2\pi}} e^{-x^2/2}\,dx \Rightarrow f_Z(z)={d\over dz}\int_{-\infty}^{z/2} {1\over \sqrt{2\pi}} e^{-x^2/2}\,dx = \bbox[red, 2pt]{{1\over 2\sqrt{2\pi}} e^{-z^2/8}}
======================== END =====================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言