臺北市高級中等學校 108 學年度聯合轉學考招生考試
高職數學科試題
高職數學科試題
單選題:共25 題,每題 4 分,共 100 分,答錯不倒扣。
解:$$由(a-b)(a^2+ab+b^2)=a^3-b^3可知 \left(\sqrt[3]{5}-2\right) \left(\sqrt[3]{25}+2\sqrt[3]{5}+4\right) =(\sqrt[3]{5})^3-2^3=5-8=-3 \\, 故選\bbox[red,2pt]{(A)}$$
解:
$$(x^3-2x^2+3x-1)(x^2-x+1)=x^5+(-1-2)x^4+(1+2+3)x^3+(-2-3)x^2+(3+1)x-1\\ =x^5-3x^4+6x^3-5x^2+4x-1=x^5+ax^4+bx^3+cx^2+dx-1\\ \Rightarrow \begin{cases} a=-3\\b=6 \end{cases} \Rightarrow a+2b=-3+12=9, 故選\bbox[red,2pt]{(C)}$$
解:$${3x+4 \over 2x-3}+ {2-x\over 3-2x} ={3x+4 \over 2x-3}+ {x-2\over 2x-3} = {4x+2\over 2x-3}, 故選\bbox[red,2pt]{(B)}$$
解:$$\sin 320^\circ=\sin (360^\circ-40^\circ)= \sin (-40^\circ) =-\sin 40^\circ = -\cos 50^\circ= \cos (180^\circ+50^\circ) =\cos 230^\circ\\, 故選\bbox[red,2pt]{(A)}$$
$$\cos A=-{\sqrt 2\over 2} \Rightarrow \angle A=225^\circ \Rightarrow \triangle ABC={1\over 2}\overline{AB}\times \overline{AC}\times \sin A ={1\over 2}\times 4\times 12\times {\sqrt 2\over 2}= 12\sqrt 2\\,故選\bbox[red,2pt]{(C)}$$
解:$$\begin{cases} \theta為第二象限角 \\ \sin \theta=3/4\end{cases}\Rightarrow \cos \theta = -{\sqrt 7 \over 4} \Rightarrow {3\csc \theta-1 \over 3+\sqrt 7 \cos \theta} ={3\times {4\over 3}-1 \over 3+\sqrt 7(-{\sqrt 7\over 4})}= {3\over 3-{7\over 4}} = {3\over {5\over 4}}=12/5\\,故選\bbox[red,2pt]{(B)}$$
解:$$\angle A: \angle B:\angle C=1:4:1 \Rightarrow \begin{cases} \angle A=k \\ \angle B=4k \\ \angle C=k\end{cases},k為常數 \Rightarrow k+4k+k=180^\circ \Rightarrow k=30^\circ \Rightarrow \begin{cases} \angle A=30^\circ \\ \angle B=120^\circ \\ \angle C=30^\circ \end{cases}\\ 由{a\over \sin A}= {b\over \sin B}= {c\over \sin C} =2R \Rightarrow {a\over 1/2}= {b\over \sqrt 3/2}= {c\over 1/2} =2R \Rightarrow \begin{cases} a=R \\ b= \sqrt 3R \\ c= R \end{cases} \\ \Rightarrow {3a+b-c \over a+b+c} ={3R+\sqrt 3R-R \over R+\sqrt 3R+R} = {2+\sqrt 3 \over 2+\sqrt 3}=1,故選\bbox[red,2pt]{(D)} $$
解:$$由三點坐標可知\angle C=90^\circ \Rightarrow \begin{cases} G=\left( {24-12+24 \over 3},{ -12-24-24\over 3}\right) =(12,-20)\\ P=\left({24-12\over 2} ,{-12-24 \over 2}\right) =(6,-18)\end{cases} \Rightarrow \\\overline{PG}= \sqrt{6^2+2^2} =2\sqrt{10},故選\bbox[red,2pt]{(A)} $$
解:
$$\theta=40^\circ \Rightarrow c>b>a \Rightarrow \begin{cases} \csc 40^\circ =c/a \\ \sec 40^\circ =c/b \\ \tan 40^\circ=a/b \end{cases} \Rightarrow \csc 40^\circ> \sec 40^\circ >\tan 40^\circ,故選\bbox[red,2pt]{(A)}$$
解:
解:
$$\overrightarrow {OA} \cdot \overrightarrow{OB}= |
\overrightarrow {OA}| \cdot |\overrightarrow{OB}| \cos\theta \Rightarrow 3\sin 105^\circ=3\sqrt{\sin^2 105^\circ+\cos^275^\circ}\cos\theta \\ \Rightarrow \cos \theta =\cfrac{ \sin 105^\circ }{\sqrt{\sin^2 105^\circ+\cos^275^\circ}}=\cfrac{ \sin 105^\circ }{\sqrt{1-\cos^2 105^\circ+\cos^2105^\circ}}= \sin 105^\circ=\sin (90^\circ+15^\circ) \\=\cos 15^\circ \Rightarrow \theta=15^\circ,故選\bbox[red,2pt]{(A)}$$
解:
假設F為原點(0,0,0),各頂點坐標如上圖;
$$(A)\overrightarrow{AB}\cdot \overrightarrow{AE} =(0,0,-2)\cdot (0,-2,0)=0\\
(B)\overrightarrow{BD}\cdot \overrightarrow{AC} =(2,0,2)\cdot (2,0,-2)=0\\
(C)\overrightarrow{AD}\cdot \overrightarrow{DE} =(2,0,0)\cdot (-2,-2,0)= -4\\
(D)\overrightarrow{DH}\cdot \overrightarrow{DG} =(0,-2,0)\cdot (0,-2,-2)=4\\,故選\bbox[red,2pt]{(D)}$$
解:
解:$$\left||\vec a|\cos \theta \right|= \left|\sqrt{24^2+10^2}\cdot \cos 120^\circ \right| =\left| 26\cdot (-{1\over 2})\right|=13,故選\bbox[red,2pt]{(A)}$$
解:$$(\vec a+\vec b)\cdot (\vec a-\vec b)=|\vec a|^2-\vec a\cdot \vec b+\vec b\cdot \vec a-|\vec b|^2 = 0 \Rightarrow (\vec a+\vec b)\bot (\vec a-\vec b) \\\Rightarrow \begin{cases} 斜邊向量為(\vec a+\vec b)- (\vec a-\vec b)=2\vec b \\ 斜邊長度為 \sqrt{4^2+3^2}=5\end{cases} \Rightarrow |2\vec b|=5 \Rightarrow |\vec b|=5/2=|\vec a|,故選\bbox[red,2pt]{(C)} $$
解:$$x^2+8x+c=0的二根分別為\alpha、\beta \Rightarrow \begin{cases}\alpha+\beta = -8\\\alpha\beta =c \end{cases} ,又\alpha-\beta=6;\\因此\begin{cases}\alpha+\beta = -8\\\alpha-\beta =6 \end{cases} \Rightarrow \begin{cases}\alpha = -1\\ \beta =-7 \end{cases} \Rightarrow c=\alpha\beta=7,故選\bbox[red,2pt]{(D)}$$
解:$$f(-3)=9a^2+2=38 \Rightarrow a=\pm 2\\又f(x)有最大值 \Rightarrow a<0 \Rightarrow a=-2,故選\bbox[red,2pt]{(A)}$$
解:$$令f(x)=2x^3+x^2-5x-3=a(x+1)^3+b(x+1)^2+c(x+1)+d \\ \Rightarrow f(-2)=-16+4+10-3=-a+b-c+d \Rightarrow 5=a-b+c-d,故選\bbox[red,2pt]{(D)}$$
解:$$x^2-1是f(x)的因式 \Rightarrow \begin{cases}f(1)=0 \\ f(-1)= 0\end{cases} \Rightarrow \begin{cases}a+b+c+d=0\cdots (1) \\-a+b-c+d= 0\cdots(2)\end{cases} \\ \Rightarrow \begin{cases}(1)+(2) \Rightarrow b+d=0\cdots(3) \\(1)-(2) \Rightarrow a+c=0 \cdots(4)\end{cases} \xrightarrow {(4)\times 2+(3)} 2a+b= -(2c+d)\\又
f(x)除以x-2餘6 \Rightarrow f(2)=6 \Rightarrow 8a+4b+(2c+d)=6 \Rightarrow 8a+4b-(2a+b)=6\\ \Rightarrow 3(2a+b)=6 \Rightarrow 2a+b=2,故選\bbox[red,2pt]{(C)}$$
解:$$6^x\times 8^y\times 9^z =(2\times 3)^x\times (2^3)^y\times (3^2)^z = 2^x\times 3^x \times 2^{3y}\times 3^{2z} =2^{x+3y}\times 3^{x+2z} =2^{11}\times 3^6\\ \Rightarrow \begin{cases}x+3y = 11\\ x+2z=6\end{cases} \xrightarrow{x,y,z皆為正整數} \begin{cases}x = 2\\ y =3 \\z=2\end{cases} \Rightarrow x+y+z=7,故選\bbox[red,2pt]{(D)}$$
解:
$$ \begin{vmatrix}7 & \sqrt{11}+\sqrt 7 \\\sqrt{11}-\sqrt 7 & 11 \end{vmatrix} =77-(\sqrt{11}+\sqrt 7)(\sqrt{11}-\sqrt 7) =77-(11-7)=73,故選\bbox[red,2pt]{(B)}$$
解題僅供參考
沒有留言:
張貼留言