Loading [MathJax]/jax/output/CommonHTML/jax.js

2019年12月19日 星期四

108年地方特考-三等-工程數學詳解


108年特種考試地方政府公務人員考試試題
等別:三等考試
類科 :電子工程、電力工程
科目:工程數學


y=c1ex+c2xex+x2ex{yh=c1ex+c2xexyp=x2exyh=c1ex+c2xexyh{yh=c1ex+c2ex+c2xexyh=c1ex+2c2ex+c2xexpyh+qyh+ryh=0(p+q+r)c2xex+((p+q+r)c1+(2p+q)c2)ex=0{p+q+r=02p+q=0{q=2pr=pp(yh2yh+yh)=0yh2yh+yh=0y2y+y=p(x),yp=x2exyp2yp+yp=2ex+4xex+x2ex(4xex+2x2ex)+x2ex=2ex=p(x)y2y+y=2ex


f(t)2TL{f(t)}=11e2Ts2T0f(t)estdt=11e2TsT0cos(πtT)estdt=11e2Ts[ests2+(π/T)2(ssinπtT+πTcosπtT)]|T0=11e2Ts[esTs2+(π/T)2(πT)+1s2+(π/T)2(πT)]=11e2Ts[1+esTs2+(π/T)2(πT)]=π/T(1esT)(s2+(π/T)2)



cos(z)=eiz+eiz2cos(3+2i)=ei(3+2i)+ei(3+2i)2=e2+3i+e23i2=12(e2e3i+e2e3i)=12(e2(cos3+isin3))+e2(cos(3)+isin(3)))=12(e2(cos3+isin3))+e2(cos3isin3))=cos3(e2+e2)2+isin3(e2e2)2=cos3cosh2isin3sinh2=a+ib{a=cos3cosh2b=sin3sinh2


γf(z)dz=γz(z+2)(z4i)dz=2πi×(Res(f,2)+Res(f,4i))=2πi(zz4i|z=2+zz+2|z=4i)=2πi(22+4i+4i2+4i)=2πi



A=[121422]AT=[112242]{ATA=[112242][121422]=[6101024]ATB=[112242][327]=[90]ATAX=ATB[6101024][x1x2]=[90]{6x1+10x2=910x1+24x2=0{x1=54/11x2=45/22x=[54/1145/22]使||AxB||


乙、測驗題部分:(50分)

{u=(1,1,1)v=(3,4,6)w=(2,4,2)|(u×v)w|=|((1,1,1)×(3,4,6))(2,4,2)|=|(2,3,1)(2,4,2)|=18(C)


A=[111021223]det(AλI)=0|1λ1102λ1223λ|=0(λ3)(λ2)(1λ)2+2(2λ)2(1λ)=0(λ3)(λ2)(λ1)=0λ=1,2,33依 Rayleigh Principle xTAxxTxλ=3(C)




A=[51010105205510]det(AλI)=0λ(λ+5)(λ5)λ=0,15,15λ=0(AλI)X=0[51010105205510][xyz]=0{x=2zy=0u1=[201]λ=15(AλI)X=0[1010101010205525][xyz]=0{x=yz=0u2=[110]λ=15(AλI)X=0[201010102020555][xyz]=0{x=0y=zu3=[011]P=[u1u2u3]=[210011101]=[ab001110c]{a=2b=1c=1abc=0(C)


m=n=r(B)


A=[130310002]det(AλI)=0(λ4)(λ+2)2=0λ=4,2λ=4(AλI)X=0[330330006][xyz]=0{x=yz=0u1=[110]λ=2(AλI)X=0[330330000][xyz]=0{x+y=0u2=[110],u3=[001]u1,u2,u3(C)


A=[0213]A=PDP1=[2111][1002][1112]eA=[2111][e00e2][1112]=[2ee22e2e2e+e2e+2e2]=[a11a12a21a22]a11+a22=2ee2e+2e2=e2+e(B)


(A)(1i)2=2i(1i)4=(2i)2=464(B)(2i)2=3+4i(2i)4=(3+4i)264(C)(12i)2=3+4i(12i)4=(3+4i)264(D)(22i)2=8i(3+4i)4=(8i)2=64(D)


ln(1i3)=ln(2(12i32))=ln(2(cos(π3)+isin(π3)))=ln(2ei(π/3))=ln2+i(π3+2nπ)(A)


z=t+itdt=dt+idt=(1+i)dtφz2dz=20(t+it)2(1+i)dt=(1+i)320t2dt=83(1+i)3=83(2+i2)=163(i1)(B)


z=0CCf(z)dz=0(A)


y=k1eax+k2ebx+ecx{yh=k1eax+k2ebxyp=ecx{yh6yh+8yh=0yp6yp+8yp=3exyh6yh+8yh=0(a26a+8)k1eax+(b26b+8)k2ebx=0{a26a+8=0b26b+8=0{(a4)(a2)=0(b4)(b2)=0ab(a,b)={(2,4)(4,2)a+b=6yp6yp+8yp=3ex(c26c+8)ecx=3exc=1a+b+c=6+1=7(C)


cf(z)dz=cezz(πi/2)dz=2πi×Res(f,πi/2)=2πi×eπi/2=2πi(cos(π/2)+isin(π/2))=2πi×(i)=2π(A)


{x1=x2x2=1.01x10.2x2x2=1.01x10.2x2=1.01x20.2x2x2+0.2x2+1.01x2=0x2=eαt(Acosβt+Bsinβt),α=0.22=0.1x2=e0.1t(Acosβt+Bsinβt)limtx2=0(B)



F(s)=s+1s2(s2+1)=as+bs2+cs+ds2+1=(a+c)s3+(b+d)s2+as+bs2(s2+1){a=1b=1a+c=0b+d=0{a=1b=1c=1d=1F(s)=1s+1s2+s1s2+1L1{F(s)}=L1{1s}+L1{1s2}L1{ss2+1}L1{1s2+1}=1+tcostsint(C)


{K=a2yT=a2x{K=α2yT=α2x,直接用代的比較快:(B)u=c1eα2ycosh2αx+c2eα2ysinh2αxux=2αc1eα2ysinh2αx+2αc2eα2ycosh2αxuxx=4α2c1cosh2αx+4α2c2eα2ysinh2αx=4uy(B)




1s2(s1s+1)=as+bs+1+cs2=(a+b)s2+(a+c)s+cs2(s+1){a+b=0a+c=1c=1{a=2b=2c=1L1L1{1s2(s1s+1)}=L1L1{2s}+L1L1{2s+1}+L1L1{1s2}=22ett(B)


|X(jw)|=2(u(w+3)u(w3))={0x323x<30x<3|X(jw)|={23x<30otherwisex(t)=12πX(jw)ejwtdw=12π|X(jw)|ejX(jw)ejwtdw=12π332ej(3w/2+π)ejwtdw=1πejπ33ejw(3/2+t)dw=1π33ejw(3/2+t)dw=1π[1j(3/2+t)ejw(3/2+t)]|33=1j(3/2+t)π(ej(9/2+3t)ej(9/23t))x(t)=0ej(9/2+3t)=ej(9/23t)92+3t=923t+2π6t=9+2πt=96+2π6=32+π3(C)


30IC1/630×(11/6)=2510IC:C2510C3010(B)


{E(X)=014xex/4dx=[xex/44ex/4]|0=0(4)=4E(X2)=014x2ex/4dx=[x2ex/48xex/432ex/4]|0=0(32)=32Var(X)=σ2X=E(X2)(E(X))2=3242=16σ2Y=Var(Y)=Var(3X2)=32Var(X)=9×16=144(D)


E(X)=xf(x)dx=102x2dx=23(B)


考選部未公布申論題答案,解題僅供參考

沒有留言:

張貼留言