國立臺灣大學112學年度碩士班招生考試
題號:194
科目:工程數學(A)

解答:(a)F(x,y,z)=x^2+y^2-z^2 \Rightarrow \vec n=(F_x,F_y,F_z)=(2x,2y,-2z) =(2,0,-1)\\ \Rightarrow 單位法向量{\vec n\over |\vec n|}=\bbox[red, 2pt]{({2\over \sqrt 5},0,-{1\over \sqrt 5})}(b)C:x^2+y^2=1,z=1 \Rightarrow r(t)=(x(t),y(t),z(t)),其中\cases{x(t)=\cos t\\ y(t)=\sin t\\ z(t)=1} \\\Rightarrow r'(t)=( -\sin t,\cos t,0),0\le t\le 2\pi \Rightarrow \vec F=(-\sin t,\cos t,\cos^3t \sin^3t)\\ \Rightarrow 線積分\int_C \vec F\cdot dr = \int_0^{2\pi} (-\sin t,\cos t,\cos^3t \sin^3t)\cdot ( -\sin t,\cos t,0)\,dt \\=\int_0^{2\pi} \sin^2t +\cos^2 t\,dt =\int_0^{2\pi} 1\,dt =\bbox[red, 2pt]{2\pi}
解答:\mathbf{(a)}\;先求齊次解y'''-3y''+3y'-y=0 \Rightarrow \lambda^3-3\lambda^2 +3\lambda -1=0 \Rightarrow (\lambda-1)^3=0\\ \Rightarrow \lambda=1 \Rightarrow y_h=(C_1+C_2x+ C_3x^2)e^x\\ 接著令y_p=Ax^3e^x \Rightarrow y_p'=3Ax^2e^x+ Ax^3e^x \Rightarrow y_p''= 6Axe^x +6Ax^2e^x+ Ax^3e^x\\ \Rightarrow y_p'''= 6Ae^x+18 Axe^x +9Ax^2e^x + Ax^3e^x \\ \Rightarrow y_p'''-3y_p''+3y_p'-y_p=6Ae^x=e^x \Rightarrow A={1\over 6} \\ \Rightarrow y=y_h+yp \Rightarrow \bbox[red, 2pt]{y=(C_1+C_2x+ C_3x^2)e^x+ {1\over 6}x^3e^x} \\\mathbf{(b)}\;L\{ xy'' \}- L\{xy'\} +L\{y\} =L\{1\} \Rightarrow -{d\over ds}(s^2Y(s)-s-1)+{d\over ds} (sY(s)-1)+ Y(s)={1\over s}\\ \Rightarrow (2-2s)Y(s)+(s-s^2)Y'(s)+1={1\over s} \Rightarrow Y'(s)+{2\over s}Y(s)={1\over s^2}\\ 積分因子\mu(s)=e^{\int 2/s\,ds} =s^2 \Rightarrow s^2Y'(s)+2sY(s)=1 \Rightarrow (s^2Y(s))'=1 \\ \Rightarrow s^2Y(s)=s+C \Rightarrow Y(s)={1\over s}+{C\over s^2} \Rightarrow y(x) =L^{-1}\{Y(s)\} =L^{-1}\{{1\over s}\}+L^{-1}\{ {C\over s^2}\} \\ \Rightarrow y(x)=1+Cx \Rightarrow y'(0)=C=1 \Rightarrow C=1 \Rightarrow \bbox[red,2pt]{y(x)=x+1}


解答:(a)令u(x,t)=F(x)G(t) \Rightarrow \cases{u_{tt}=FG''\\ u_{xx} =F''G} ,依題意FG''=F''G \Rightarrow {F'' \over F}= {G'' \over G}=k為常數\\ 邊界條件\cases{u(0,t) = F(0)G(t)=0\\ u(1,t) =F(1)G(t)=0},若G(t)=0,則u=0為明顯解,不討論\\ 因此邊界條件變為F(0)= F(1)=0\\ 現在對常數k進行討論:\\ 若k=0,則F''=0 \Rightarrow F(x)=ax+b,再將邊界條件代入\Rightarrow \cases{F(0)=b=0\\ F(1)=a+b=0} \\ \qquad\Rightarrow F=0,則u=0為明顯解,不討論\\ 若k\gt 0,假設k=c^2 \Rightarrow F''-c^2F=0 \Rightarrow F=C_1e^{cx}+C_2 e^{-cx},代入邊界條件 \\ \qquad \Rightarrow \cases{F(0)= C_1+C_2=0\\ F(1)=C_1e^c+C_2e^{-c}=0} \Rightarrow C_1=C_1=0,則u=0為明顯解,不討論\\因此只能假設k\lt 0, 假設k=-c^2 \Rightarrow F''+c^2F=0 \Rightarrow F=A\cos (cx)+B \sin(cx)\\ 再代入邊界條件:\cases{F(0)=A=0\\ F(1)=A\cos(c)+ B\sin(c)=0} \Rightarrow \sin(c)=0 \Rightarrow c=n\pi \\ \Rightarrow F_n(x)= \sin(n\pi x),n\in \mathbb N\\ 接著求G(t),{G''\over G}=k=-c^2=-n^2\pi^2 \Rightarrow G''+n^2\pi^2 G=0\\ \Rightarrow G_n(t)=A_n \cos n\pi t+B_n\sin n\pi t \Rightarrow u_n(x,t)=(A_n \cos n\pi t+B_n\sin n\pi t)\sin(n\pi x)\\ \Rightarrow \bbox[red, 2pt]{u(x,t)=\sum_{n=1}^\infty (A_n \cos n\pi t+B_n\sin n\pi t)\sin(n\pi x), n\in \mathbb N} (b)u(x,0)=f(x) \Rightarrow f(x)= \sum_{n=1}^\infty A_n \sin(n\pi x), n\in \mathbb N \Rightarrow A_n= 2\int_0^1 f(x)\sin(n\pi x)\,dx\\ u_t(x,0)=g(x)= \left. \sum_{n= 1}^\infty (n\pi B_n \cos(n\pi t) -n\pi A_n \sin(n\pi t)) \sin(n\pi x)\right|_{t=0} \\\Rightarrow g(x)=\sum_{n= 1}^\infty (n\pi B_n ) \sin(n\pi x) \Rightarrow B_n={2\over n\pi}\int_0^1 g(x)\sin(n\pi x)\,dx\\ 因此\bbox[red,2pt]{u(x,t)= \sum_{n=1}^\infty (A_n\cos(n\pi t) +B_n\sin(n\pi t))\sin (n\pi x), 其中\cases{A_n=2\int_0^1 f(x)\sin(n\pi x)\,dx\\ B_n={2\over n\pi}\int_0^1 g(x)\sin(n\pi x)\,dx},n \in \mathbb{N}}
沒有留言:
張貼留言