Loading [MathJax]/jax/output/CommonHTML/jax.js

2023年5月18日 星期四

112年台大碩士班-工程數學(A)詳解

 國立臺灣大學112學年度碩士班招生考試

題號:194
科目:工程數學(A)




解答(a)A=[111111111]det(A)=111111=4det(A5)=(det(A))5=(4)5=1024(b)det(AλI)=0(λ+1)(λ2)2=0A122A5(1)5,25,251+32+32=63(c)[111100111010111001]r1+r2r2,r1+r3r3[111100002110020101]r2r3[111100020101002110]r2/2r2,r3/2r3[1111000101/201/20011/21/20]r1+r2+r3r1[10001/21/20101/201/20011/21/20]A1=[01/21/21/201/21/21/20]B=[01/21/21/201/21/21/20]B2=[1/21/41/41/41/21/41/41/41/2]B4=[3/85/165/165/163/85/165/165/163/8]B5=[5/1611/3211/3211/325/1611/3211/3211/325/16];(b)A1,2B=A11,1/2B51,1/32λ1=1(B5λ1I)x=0[11/1611/3211/3211/3211/1611/3211/3211/3211/16][x1x2x3]=0{x1=x3x2=x3,v1=[111]λ2=1/32(B5λ2I)x=0[11/1611/3211/3211/3211/1611/3211/3211/3211/16][x1x2x3]=0x1+x2+x3=0,v2=[110],v3=[101]B5[111],[110],[101]
解答(a)F(x,y,z)=x2+y2z2n=(Fx,Fy,Fz)=(2x,2y,2z)=(2,0,1)n|n|=(25,0,15)(b)C:x2+y2=1,z=1r(t)=(x(t),y(t),z(t)),{x(t)=costy(t)=sintz(t)=1r(t)=(sint,cost,0),0t2πF=(sint,cost,cos3tsin3t)CFdr=2π0(sint,cost,cos3tsin3t)(sint,cost,0)dt=2π0sin2t+cos2tdt=2π01dt=2π

解答(a)y3y+3yy=0λ33λ2+3λ1=0(λ1)3=0λ=1yh=(C1+C2x+C3x2)exyp=Ax3exyp=3Ax2ex+Ax3exyp=6Axex+6Ax2ex+Ax3exyp=6Aex+18Axex+9Ax2ex+Ax3exyp3yp+3ypyp=6Aex=exA=16y=yh+ypy=(C1+C2x+C3x2)ex+16x3ex(b)L{xy}L{xy}+L{y}=L{1}dds(s2Y(s)s1)+dds(sY(s)1)+Y(s)=1s(22s)Y(s)+(ss2)Y(s)+1=1sY(s)+2sY(s)=1s2μ(s)=e2/sds=s2s2Y(s)+2sY(s)=1(s2Y(s))=1s2Y(s)=s+CY(s)=1s+Cs2y(x)=L1{Y(s)}=L1{1s}+L1{Cs2}y(x)=1+Cxy(0)=C=1C=1y(x)=x+1

解答(a)u(x,t)=F(x)G(t){utt=FGuxx=FG,FG=FGFF=GG=k{u(0,t)=F(0)G(t)=0u(1,t)=F(1)G(t)=0G(t)=0,u=0F(0)=F(1)=0kk=0,F=0F(x)=ax+b,{F(0)=b=0F(1)=a+b=0F=0,u=0k>0,k=c2Fc2F=0F=C1ecx+C2ecx,{F(0)=C1+C2=0F(1)=C1ec+C2ec=0C1=C1=0,u=0k<0,k=c2F+c2F=0F=Acos(cx)+Bsin(cx){F(0)=A=0F(1)=Acos(c)+Bsin(c)=0sin(c)=0c=nπFn(x)=sin(nπx),nNG(t),GG=k=c2=n2π2G+n2π2G=0Gn(t)=Ancosnπt+Bnsinnπtun(x,t)=(Ancosnπt+Bnsinnπt)sin(nπx)u(x,t)=n=1(Ancosnπt+Bnsinnπt)sin(nπx),nN (b)u(x,0)=f(x)f(x)=n=1Ansin(nπx),nNAn=210f(x)sin(nπx)dxut(x,0)=g(x)=n=1(nπBncos(nπt)nπAnsin(nπt))sin(nπx)|t=0g(x)=n=1(nπBn)sin(nπx)Bn=2nπ10g(x)sin(nπx)dxu(x,t)=n=1(Ancos(nπt)+Bnsin(nπt))sin(nπx),{An=210f(x)sin(nπx)dxBn=2nπ10g(x)sin(nπx)dx,nN

沒有留言:

張貼留言