國立中山大學112學年度碩士班暨碩士在職專班
科目名稱:微積分【企管系企管甲班碩士班甲組選考,乙組選考,丙組選考】
Q1. (5+5=10%)
Calculate the following limits:
(i)
解答:−1x≤sinxx≤1x⇒limx→∞−1x≤limx→∞sinxx≤limx→∞1x⇒0≤limx→∞sinxx≤0依夾擠定理:limx→∞sinxx=0
(ii)解答:limx→35x2−8x−13x2−5=45−24−139−5=2
Q2. (10%)Evaluate the following differentiation:
解答:(x−y)2=x+y-1⇒2(x−y)(1−y′)=1+y′⇒dydx=y′=2(x−y)−12(x−y)+1
解答:an=(x−2)nn+2⇒|an+1an|=|(x−2)n+1n+3⋅n+2(x−2)n|=|n+2n+3⋅(x−2)|因此limn→∞|an+1an|=|x−2|<1⇒1<x<3x=1⇒∞∑n=0(x−2)nn+2=∞∑n=0(−1)nn+2=12−13+14−⋯=1−ln2x=3⇒∞∑n=0(x−2)nn+2=∞∑n=01n+2為調和級數=∞因此收斂區間:[1,3)
解答:ln(x+2)=∫1x+2dx=12∫11−(−x/2)dx=12∫(1−x2+x24−x38+⋯)dx=12(x−14x2+112x3−132x4+⋯)⇒f(x)=xln(x+2)=12x2−18x3+124x4−164x5+⋯
解答:(i)range of y:(−π2,π2),domain of y:(−∞,∞)(ii)y=arctanx⇒tany=x⇒ddxtany=ddxx⇒sec2y⋅dydx=1,故得證tany=x⇒secy=1√1+x2⇒ddxf−1(x)=dydx=1sec2(y)=11+x2
沒有留言:
張貼留言