國立暨南國際大學112學年度碩士班入學考試
科目:工程數學(線性代數、微分方程)
編號:342 適用:電機系
解答:(a)2xyy′=y2−x2⇒y′−y2x=−x2y為Bernoulli equation取v=y2⇒v′=2yy′代回原式⇒xv′−v=−x2⇒v′−1xv=−x⇒積分因子u(x)=e∫−(1/x)dx=1x⇒v′x−vx2=−1⇒(vx)′=−1⇒vx=y2x=−x+C⇒y2=−x2+Cx⇒y=±√−x2+Cx,C為常數(b)y″−4y′+4y=0⇒特徵方程式:λ2−4λ+4=0⇒(λ−2)2=0⇒λ=2二重根⇒y=C1e2x+C2xe2x,C1,C2為常數(c)y‴+12y″+48y′+64y=0⇒特徵方程式:λ3+12λ2+48λ+64=0⇒(λ+4)3=0⇒x=−4,三重根⇒y=e−4x(C1+C2x+C3x2),C1,C2,C3為常數
解答:(a)L{f(t)}≡F(s)=∫∞0f(t)e−stdtL−1{F(s)}=f(t), if L{f(t)}=F(s)(b)F(s)=∫∞0f(t)e−stdt⇒−ddsF(s)=−dds∫∞0f(t)e−stdt=∫∞0tf(t)e−stdt=L{tf(t)},故得證(c)L{cos(kt)}=∫∞0cos(kt)e−stdt=[1k2+s2⋅e−st(ksin(kt)−scos(kt))]|∞0=ss2+k2⇒L{tcos(kt)}=−dds(ss2+k2)=−1s2+k2+2s2(s2+k2)2=2s2−(s2+k2)(s2+k2)2=s2−k2(s2+k2)2同理,L{sin(kt)}=∫∞0sin(kt)e−stdt=[−1s2+k2⋅e−st(ssin(kt)+kcos(kt))]|∞0=ks2+k2⇒L{tsin(kt)}=−dds(ks2+k2)=2ks(s2+k2)2(d)L{y″}+16L{y}=L{cos(4t)}⇒s2Y(s)−sy(0)−y′(0)+16Y(s)=ss2+42⇒(s2+16)Y(s)=ss2+16+1⇒Y(s)=s(s2+16)2+1s2+16⇒L−1{Y(s)}=y(t)=L−1{s(s2+16)2}+L−1{1s2+16}=18sin(4t)+14sin(4t)⇒y=18sin(4t)+14sin(4t)
解答:(a)x=18(2,1,1)−18(2,−1,1)−10(1,2,1)=(−10,16,−10)(b)假設[x]B′=(a,b,c)⇒a(3,1,−5)+b(1,1,−3)+c(−1,0,2)=(−10,16,−10)⇒{3a+b−c=−10a+b=16−5a−3b+2c=−10⇒{a=−7b=23c=12⇒[x]B′=(−7,23,12)
解答:(a)det(A−λI)=−(λ+4)(λ−8)2=0⇒eighenvalues: −4,8(b)λ1=−4⇒(A−λ1I)v=0⇒[6606600012][x1x2x3]=0⇒{x1=−x2x3=0,取v1=[−110]λ2=8⇒(A−λ2I)v=0⇒[−6606−60000][x1x2x3]=0⇒x1=x2,取v2=[110],v3=[001]the corresponding eigenvectors: [−110],[110],[001](c)[−110] is a basis for the eigenspace corresponding to λ=−4[110]and[001]together constitute the basis for the eigenspace corresponding to λ=8
沒有留言:
張貼留言