國立臺北科技大學113學年度碩士班招生考試
系所組別: 電機工程系碩士班丁組
第一節 線性代數
解答:A=[−122−3−13]⇒{ATA=[6−11−1122]ATb=[−411]⇒rref([ATA∣ATb])=rref([6−11−4−112211])=[103002]⇒the least-squares solution: [32]
解答:(1)Let Ea(A)={x∣Ax=ax} be the eigenspace of A corresponding to a.(a)A→o=a→0=→0⇒→0∈Ea(A)(b)x∈Ea(A)⇒A(tx)=tA(x)=tax=atx⇒A(tx)=atx⇒tx∈Ea(A)(c){x1∈Ea(A)x2∈Ea(A)⇒{Ax1=ax1Ax2=ax2⇒A(x1+x2)=A(x1)+A(x2)=ax1+ax2=a(x1+x2)⇒x1+x2∈Ea(A)By (a),(b),(c), we can concloude that Ea(A) is a subspace.QED(2)t1x+t2y=0⇒t1ax+t2ay=0⋯(1)t1x+t2y=0⇒A(t1x+t2y)=A(t1x)+A(t2y)=t1ax+t2by=0⋯(2)(1)−(2)⇒t2(a−b)y=0⇒t2=0⇒t1x=0⇒t1=0⇒x,y are linearly independentBy the same way,t1x+t2y+t3z=0⇒t1cx+t2cy+t3cz=0⋯(3)t1x+t2y+t3z=0⇒A(t1x+t2y+t3z)=t1ax+t2by+t3cz=0⋯(4)(3)−(4)⇒t1(c−a)x+t2(c−b)y=0⇒t1(c−a)=t2(c−b)=0(∵x,y independent)⇒t1=t2=0⇒t3z=0⇒t3=0⇒x,y,z are linearly independentContinuing on the same way, t1x+t2y+t3z+t4w=0⇒t1dx+t2dy+t3dz+t4dw=0⋯(5)t1x+t2y+t3z+t4w=0⇒A(t1x+t2y+t3z+t4w)=t1ax+t2by+t3cz+t4dw=0⋯(6)(5)−(6)⇒t1(a−d)x+t2(b−d)y+t3(c−d)z=0x,y,z are linealy independent ⇒{t1(a−d)=0t2(b−d)=90t3(c−d)=0⇒{t1=0t2=0t3=0⇒t4z=0⇒t4=0Finally, we have x,y,z,w are linealy independent.QED解答:A is full rank⇒rank(A)=N⇒nullity(A)=N−rank(A)=0⇒nullity(A)=0⇒Ax=0 has only the trivial solution.QED
解答:(1)A=PBP−1⇒A2=PBP−1PBP−1=PBBP−1=PB2P−1⇒A2 is similar to B2QED(2)A=PBP−1=QDQ−1,where Q is diagonal⇒BP−1=P−1QDQ−1⇒B=P−1QDQ−1P=(P−1Q)D(P−1Q)−1⇒B is diagonalizable QED
解答:(1)det(H−λI)=0⇒(λ−3)(λ−4)3=0、⇒ eigenvalues: 3,4, and their multiplicities are 1,3(2)det(UHUT)=det(U)det(H)det(UT)=det(H)det(U)det(UT)=det(H)det(UUT)=det(H)det(I)=det(H)=43⋅3=192(3)trace(UHUT)=trace(HUUT)=trace(HI)=trace(H)=4×3+3=15(4)Hx=[4321043200430003][abcd]=[4a+3b+2c+d4b+3c+2d4c+3d3d]||U(Hx)||2=(U(Hx))T(U(Hx))=(Hx)TUTU(Hx)=(Hx)T(Hx)=||Hx||2⇒||U(Hx)||=√(4a+3b+2c+d)2+(4b+3c+2d)2+(4c+3d)2+(3d)2

解答:{X=[100−1]Y=[−1000]⇒X+Y=[0000]⇒{det(X)=det(Y)=−1det(X+Y)=0⇒det(X)+det(Y)=−2≠det(X+Y)=0⇒disprove
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第5題第4小題好像有誤
回覆刪除可否明示?
刪除