Processing math: 100%

2024年4月22日 星期一

113年台北科大電機碩士班-線性代數詳解

國立臺北科技大學113學年度碩士班招生考試

系所組別: 電機工程系碩士班丁組
第一節 線性代數


解答:A=[122313]{ATA=[6111122]ATb=[411]rref([ATAATb])=rref([6114112211])=[103002]the least-squares solution: [32] 

解答:(1)Let Ea(A)={xAx=ax} be the eigenspace of A corresponding to a.(a)Ao=a0=00Ea(A)(b)xEa(A)A(tx)=tA(x)=tax=atxA(tx)=atxtxEa(A)(c){x1Ea(A)x2Ea(A){Ax1=ax1Ax2=ax2A(x1+x2)=A(x1)+A(x2)=ax1+ax2=a(x1+x2)x1+x2Ea(A)By (a),(b),(c), we can concloude  that Ea(A) is a subspace.QED(2)t1x+t2y=0t1ax+t2ay=0(1)t1x+t2y=0A(t1x+t2y)=A(t1x)+A(t2y)=t1ax+t2by=0(2)(1)(2)t2(ab)y=0t2=0t1x=0t1=0x,y are linearly independentBy the same way,t1x+t2y+t3z=0t1cx+t2cy+t3cz=0(3)t1x+t2y+t3z=0A(t1x+t2y+t3z)=t1ax+t2by+t3cz=0(4)(3)(4)t1(ca)x+t2(cb)y=0t1(ca)=t2(cb)=0(x,y independent)t1=t2=0t3z=0t3=0x,y,z are linearly independentContinuing on the same way, t1x+t2y+t3z+t4w=0t1dx+t2dy+t3dz+t4dw=0(5)t1x+t2y+t3z+t4w=0A(t1x+t2y+t3z+t4w)=t1ax+t2by+t3cz+t4dw=0(6)(5)(6)t1(ad)x+t2(bd)y+t3(cd)z=0x,y,z are linealy independent {t1(ad)=0t2(bd)=90t3(cd)=0{t1=0t2=0t3=0t4z=0t4=0Finally, we have x,y,z,w are linealy independent.QED 
解答:A is full rankrank(A)=Nnullity(A)=Nrank(A)=0nullity(A)=0Ax=0 has only the trivial solution.QED 

解答:(1)A=PBP1A2=PBP1PBP1=PBBP1=PB2P1A2 is similar to B2QED(2)A=PBP1=QDQ1,where Q is diagonalBP1=P1QDQ1B=P1QDQ1P=(P1Q)D(P1Q)1B is diagonalizable QED 


解答:(1)det(HλI)=0(λ3)(λ4)3=0 eigenvalues: 3,4, and their multiplicities are 13(2)det(UHUT)=det(U)det(H)det(UT)=det(H)det(U)det(UT)=det(H)det(UUT)=det(H)det(I)=det(H)=433=192(3)trace(UHUT)=trace(HUUT)=trace(HI)=trace(H)=4×3+3=15(4)Hx=[4321043200430003][abcd]=[4a+3b+2c+d4b+3c+2d4c+3d3d]||U(Hx)||2=(U(Hx))T(U(Hx))=(Hx)TUTU(Hx)=(Hx)T(Hx)=||Hx||2||U(Hx)||=(4a+3b+2c+d)2+(4b+3c+2d)2+(4c+3d)2+(3d)2 

解答:{X=[1001]Y=[1000]X+Y=[0000]{det(X)=det(Y)=1det(X+Y)=0det(X)+det(Y)=2det(X+Y)=0disprove 

==================== END ======================
解題僅供參考,其他歷年試題及詳解

2 則留言: