教育部 112 年自學進修專科學校學力鑑定考試
專業科目(一):工程數學
解答: y″+6y′+9y=0⇒λ2+6λ+9=0⇒(λ+3)2=0⇒λ=−3⇒y=C1e−3x+C2xe−3x,故選(B)
解答: 只有選項(C)的係數為常數,故選(C)
解答: 令y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″+3xy′+2y=m(m−1)xm+3mxm+2xm=(m2+2m+2)xm=0⇒m2+2m+2=0⇒m=−1±i⇒y=c1x−1+i+c2x−1−i=1x(c1xi+c2x−i)=1x(c1eilnx+c2e−ilnx)=1x(Acos(lnx)+Bsin(lnx)),故選(A)
解答: 先求齊次解:y″−2y′+2y=0⇒λ2−2λ+2=0⇒λ=1±i⇒yh=ex(Acosx+Bsinx)令yp=Ce4x⇒y′p=4Ce4x⇒y″p=16Ce4x代入y″p−2y′p+2yp=3e4x⇒16Ce4x−8Ce4x+2Ce4x=10Ce4x=3e4x⇒C=310⇒yp=310e4x⇒y=yh+yp=ex(Acosx+Bsinx)+310e4x,故選(C)
解答: (A){M=y2+3N=2xy−2⇒My=2y=Nx⇒正合(B){M=y+cosxN=x+siny⇒My=1=Nx⇒正合(C){M=2xy3+2x+cosyN=3x2y2−cosx+y⇒{My=6xy2−sinxNx=6xy2+sinx⇒My≠Nx(D){M=x+e−xcosyN=y+e−xsiny⇒My=−e−xsiny=Nx⇒正合故選(C)
解答: L−1{2s−1s2+4s+5}=L−1{2(s+2)−5(s+2)2+1}=2L−1{s+2(s+2)2+1}−5L−1{1(s+2)2+1}=e−2t(2cost−5sint),故選(D)
解答: L{f(t)∗g(t)}=L{f(t)}⋅L{g(t)}=L{tet}L{cos2t}=(−1)ddsL{et}⋅ss2+22=1(s−1)2⋅ss2+4=s(s−1)2(s2+4),故選(A)
解答: f(x)=1−3cos2x⇒f(x)=f(−x)⇒f(x)為偶函數⇒Bn=0,n∈N,故選(D)
解答: A0=12π∫π−πf(x)dx=1π∫π0xdx=1π⋅12π2=12π≠πAn=1π∫π−πf(x)cosnxdx =2π∫π0xcosnxdx=2π[1nxsin(nx)+1n2cos(nx)]|π0=2n2π((−1)n−1)⇒{A1=−4/πA3=−4/9πA5=−4/25π,故選(C)
解答: {→u=(1,2,−5)→v=(2,1,−3)⇒{→u⋅→u=1+4+25=30→v⋅→u=2+2+15=19⇒(→u+2→v)⋅→u=→u⋅→u+2→v⋅→u=30+2⋅19=68,故選(D)
解答: Z軸向量=→b=(0,0,1)⇒cosγ=→a⋅→b|→a||→b|=(2,3,−2)⋅(0,0,1)√22+32+(−2)2⋅√1=−2√17,故選(A)
解答: {→v=(−3,4,4)→w=(0,1,2)⇒→v×→w=(4,6,−3)⇒→u⋅(→v×→w)=(2,3,a)⋅(4,6,−3)=26−3a=29⇒a=−1,故選(B)
解答: (→u×→v)⋅→v=0⇒(1,7,−5)⋅(a,3,5)=a−4=0⇒a=4,故選(D)
解答: 2A+3B=2[1−2−34]+3[135a]=[5598+3a]⇒(2A+3B)C=[5598+3a][b335]=[25405182]⇒{5b+15=2567+15a=82⇒{b=2a=1⇒a−b=−1,故選(B)
解答: |1312a3471|=−3a+23=8⇒a=5,故選(D)
解答: A=[6734]⇒A−1=1det
解答: \begin{vmatrix} 8 & 4\\ 4& 2\end{vmatrix}=16-16=0,其餘行列式皆不為0,故選\bbox[red, 2pt]{(A)}
解答: \begin{bmatrix} -4 & 1 & 11\\ 1& 2& 4\\ 2& 1& -1\end{bmatrix} \xrightarrow{4R_2+R_1 \to R_1,-2R_2+R_3\to R_3}\begin{bmatrix} 0 & 9 & 27\\ 1& 2& 4\\ 0& -3& -9\end{bmatrix} \xrightarrow{3R_3+R_1\to R_1} \begin{bmatrix} 0 & 0 & 0\\ 1& 2& 4\\ 0& -3& -9\end{bmatrix} \\ \xrightarrow{R_3/(-3) \to R_3} \begin{bmatrix} 0 & 0 & 0\\ 1& 2& 4\\ 0& 1& 3\end{bmatrix} \xrightarrow{(R_1,R_2)交換,(R_2,R_3)交換)}\begin{bmatrix}1& 2& 4\\ 0& 1& 3\\0 & 0 & 0\end{bmatrix} \Rightarrow 秩=2,故選\bbox[red, 2pt]{(B)}
解答: \cases{x+2y-z=3 \cdots(1)\\ 4x+3y+5z=4 \cdots(2)\\ 2x-y+7z=t\cdots(3)} ,由(1)得z=x+2y-3代入(3)及(4) \Rightarrow \cases{9x+13y=19\\ 9x+13y=t+21}\\ 有無限多解\Rightarrow 19=t+21 \Rightarrow t=-2,故選\bbox[red, 2pt]{(A)}
================= END ======================
解題僅供參考,其他歷年試題及詳解
Wow, I think you have a very nice website.
回覆刪除