教育部 112 年自學進修專科學校學力鑑定考試
專業科目(一):初級統計
解題: $$枝葉圖與散佈圖顯然不適合,而手遊種類為離散型,故選\bbox[red, 2pt]{(D)}$$
解題: $$XL \gt L\gt M\gt S\gt XS,故選\bbox[red, 2pt]{(B)}$$
解題: $$P(Z\lt 1.27)=0.898 \Rightarrow P(Z\gt 1.27)=P(Z\lt -1.27)=1-0.898=0.102\\ \Rightarrow P(-1.27\lt Z\lt 1.27)=1-P(Z\lt -1.27)-P(Z\gt 1.27) =1-2\times 0.102=0.796\\,故選\bbox[red, 2pt]{(C)}$$
解題: $$H_0: 壽命\gt 20000,故選\bbox[red, 2pt]{(B)}$$
解題: $$不偏估計僅期望值相等,不代表其他估計值與母體相等,故選\bbox[red, 2pt]{(B)}$$
解題: $$X\sim Poisson(\lambda) \Rightarrow E(X)=\lambda = 1.5 \Rightarrow E(30X)=30E(X)=45,故選\bbox[red, 2pt]{(C)}$$
解題: $$500\times 0.72=360,故選\bbox[red, 2pt]{(C)}$$
解題: $$每次抽中白球的機率=抽中黑球的機率{1\over 2} \Rightarrow 3白一黑的機率=C^4_3({1\over 2})^4={1\over 4} =0.25\\,故選\bbox[red, 2pt]{(B)}$$
解題: $$盒鬚圖表達四分位相對位置,無法表達血型分佈無關,故選\bbox[red, 2pt]{(B)}$$
解題: $$只有不良品個數沒有小數點,故選\bbox[red, 2pt]{(C)}$$
解題: $$重量由小至大排序:50, 60,120, 140, 150, 180,\\中位數=第三與第四的平均=(120+140)/2=130,故選\bbox[red, 2pt]{(B)}$$
解題: $$0.0111出現3次,頻率最高,故選\bbox[red, 2pt]{(A)}$$
解題: $$X\sim Poisson(\lambda=2) \Rightarrow P(X=0)=e^{-\lambda}\cdot {\lambda^0\over 0!} =e^{-\lambda }=e^{-2},故選\bbox[red, 2pt]{(C)}$$
解題: $$P(A\mid B)={P(A\cap B)\over P(B)} ={P(A)+P(B)-P(A\cup B)\over P(B)}=0.4 \Rightarrow {0.5+ P(B)-0.9\over P(B)}=0.4 \\ \Rightarrow P(B)-0.4=0.4P(B) \Rightarrow P(B)={2\over 3}=0.67,故選\bbox[red, 2pt]{(C)}$$
解題: $$\cases{每題答對機率p=1/4\\ 每題答錯機率q=1-1/4=3/4} \Rightarrow 6題猜對5題機率=C^6_5p^5q = 6\cdot ({1\over 4})^5 \cdot ({3\over 4}) \\={18\over 4^6} =0.00439,故選\bbox[red, 2pt]{(B)}$$
解題: $$X\sim Exp(\lambda=1/20) \Rightarrow P(x\gt 5)=e^{-5\lambda} ={1\over e^{1/4}}=0.78,故選\bbox[red, 2pt]{(B)}$$
解題: $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline i & 1 & 2& 3& 4 & 5 & 6 & 7& 8 & 9 & 10\\\hline a_i& 19 & 28 & 32&38 & 39 & 46& 47 & 48& 51& 62\\\hline\end{array} \\ \Rightarrow \cases{10/4=2.5 \Rightarrow Q_1=a_3=32\\ 10\cdot 3/4=7.5 \Rightarrow Q_3=a_8=48} \Rightarrow IQR=Q_3-Q_1=48-32=16,故選\bbox[red, 2pt]{(C)}$$
解題: $$P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(B\cap C)-P(A\cap C)+P(A\cap B\cap C) \\=0.25 + 0.25+0.25 -0-0-0.2+0.2=0.75,故選\bbox[red, 2pt]{(D)}$$
解題: $$非單一母體,也不是兩兩比較,因此利用ANOVA檢定平均數是否相同,故選\bbox[red, 2pt]{(D)}$$
解題: $$每次手術成功機率皆是0.9,故選\bbox[red, 2pt]{(C)}$$
解題: $$檢驗兩母體抽菸與得肺癌是否一致,故選\bbox[red, 2pt]{(C)}$$
解題: $$\cases{n=500\\p=300/500=0.6} \Rightarrow z_{\alpha/2}\sqrt{p(1-p)\over n} =1.96\times \sqrt{0.6\cdot 0.4\over 500}=0.043\\ \Rightarrow 信賴區間(0.6-0.043,0.6+0.043)=(0.557,0.643),故選\bbox[red, 2pt]{(B)}$$
解題: $$\cases{E(X)=2\\ E(X^2)=10} \Rightarrow Var(X)=E(X^2)-(E(X))^2=10-2^2=6\\ \Rightarrow Var(3X-5)= 3^2Var(x)=9\cdot 6=54,故選\bbox[red, 2pt]{(D)}$$
解題: $$H_0:平均薪資=5.5萬元\\(A)\times:0.06\gt 0.05 \Rightarrow 沒有足夠證據拒絕H_0 \\(B)\times:0.2\gt 0.05 \Rightarrow 沒有足夠證據拒絕H_0 \\(C)\bigcirc:0.04\lt 0.05 \Rightarrow 有足夠證據拒絕H_0 \\(D)\times:0.03\lt 0.05 \Rightarrow 有足夠證據拒絕H_0 \\,故選\bbox[red, 2pt]{(C)}$$
解題: $$\cases{p(x=2)=0.1+0.05\cdot 2=0.2 \\p(x=3)=0.1+0.05\cdot 3=0.25} \Rightarrow p(x=2)+p(x=3)=0.45,故選\bbox[red, 2pt]{(B)}$$
解題: $$p(五位都打工)+p(四位打工一位不打工) =0.6^5+C^5_10.6^4\cdot 0.4=0.33696,故選\bbox[red, 2pt]{(A)}$$
解題: $$\cases{p(X=1)={1\over 8}C^3_1={3\over 8}\\ p(X=2)={1\over 8}C^3_2={3\over 8}\\ p(X=3)={1\over 8}} \Rightarrow E(X)=1\cdot {3\over 8}+2\cdot {3\over 8}+3\cdot {1\over 8}={12\over 8}=1.5,故選\bbox[red, 2pt]{(D)}$$
解題: $$p(x=1)+p(x=2)+p(x=3)+p(x=4)=1 \Rightarrow k+2k+3k+4k=10k=1 \Rightarrow k={1\over 10}\\ \Rightarrow E(X)=p(x=1)+2p(x=2)+3p(x=3)+4p(x=4) =k+4k+9k+16k\\= 30k={30\over 10}=3,故選\bbox[red, 2pt]{(C)}$$
解題: $${40\times 65-(80-40)\over 40}=64,故選\bbox[red, 2pt]{(A)}$$
解題: $$X\sim Poisson(\lambda) \Rightarrow p(x=k)=e^{-\lambda}\cdot {\lambda ^k\over k!}\\因此p(x=1)=p(x=2) \Rightarrow e^{-\lambda}\cdot {\lambda} =e^{-\lambda}\cdot {\lambda^2\over 2} \Rightarrow \lambda={\lambda^2\over 2} \Rightarrow \lambda=2\\ \Rightarrow p(x=3)=e^{-\lambda}\cdot {\lambda^3\over 3!} =e^{-2}\cdot {2^3\over 6}=1.33e^{-2},故選\bbox[red, 2pt]{(D)}$$
解題: $$B班變異數49大於A班變異數25,故選\bbox[red, 2pt]{(B)}$$
解題: $$左偏\Rightarrow \cases{主峰偏右\\眾數\gt 中位數\gt 平均數},故選\bbox[red, 2pt]{(C)}$$
解題: $$P(X\gt 120)=P({X-130\over 10}\gt -1)=P(Z\gt -1) =1-P(Z\lt -1)=1-0.1587=0.8413 \\ \Rightarrow 人數=200 \times 0.8413=168.26,故選\bbox[red, 2pt]{(D)}$$
解題: $$P(Z\gt 1.28)=0.1 \Rightarrow 1.28={x-130\over 10} \Rightarrow x=142.8,故選\bbox[red, 2pt]{(C)}$$
解題: $$樣本變異數={16\over 10}=1.6,故選\bbox[red, 2pt]{(D)}$$
解題: $$P(\bar x\gt 51)=P(Z\gt {51-50\over \sqrt{16/36}}) =P(Z\gt 3/2)=0.0668,故選\bbox[red, 2pt]{(C)}$$
解題: $$z_{\alpha/2}\cdot {\sigma\over \sqrt n}=1.645\cdot {3\over \sqrt{100}} =0.4935 \Rightarrow 信賴區間=(8-0.4935,8+0.4935) \\=(7.5065,8.4935),故選\bbox[red, 2pt]{(B)}$$
解題: $$n\ge z_{\alpha/2}^2 \cdot {\sigma^2\over E^2} =1.645^2\cdot {3^2\over 0.3^2}= 270.6 \Rightarrow n=271,故選\bbox[red, 2pt]{(B)}$$
解題: $$若\cases{H_0:平均出租掉時間小於3個月\\H_1:平均出租掉時間大於3個月} \Rightarrow \cases{\text{type I error: }H_0正確但拒絕H_0\\ \text{type II error: }H_0錯誤但不拒絕H_0} \Rightarrow (A)(B)錯誤\\ 若\cases{H_0:平均出租掉時間大於3個月\\H_1:平均出租掉時間小於3個月} \Rightarrow \cases{\text{type I error: }H_0正確但拒絕H_0\\ \text{type II error: }H_0錯誤但不拒絕H_0} \Rightarrow (C)錯誤\\,故選\bbox[red, 2pt]{(C)}$$
解題: $$z={3.1-3\over 1/\sqrt{36}}=0.6,故選\bbox[red, 2pt]{(D)}$$
解題: $$同一母體,檢定變異數是否小 於0.15,故選\bbox[red, 2pt]{(B)}$$
解題: $$檢定統計量\chi^2={(n-1)s^2\over \sigma^2} ={(28-1)0.35^2\over 0.15}=22.05,故選\bbox[red, 2pt]{(A)}$$
解題: $$台中高雄兩不同母體,檢定平均收入,故選\bbox[red, 2pt]{(A)}$$
解題: $$n=15 為小樣本\Rightarrow 檢定統計量t={\bar x_1-\bar x_2\over \sqrt{{s_1^2\over n_1}+{s_2^2\over n_2}}} ={28900-30300\over \sqrt{{2300^2\over 15}+ {2100^2\over 15}}} =-1.74,故選\bbox[red, 2pt]{(D)}$$
解題: $$檢定兩獨立母體(男性與女性)的事故比例是否相等,故選\bbox[red, 2pt]{(D)}$$
解題: $$\cases{n_1=100 \Rightarrow p_1=12/100=0.12\\ n_2=80 \Rightarrow p_2=6/80=0.075} \Rightarrow 檢定統計量z={\bar p_1-\bar p_2\over \sqrt{{p_1(1-p_1)\over n_1}+{p_2(1-p_2)\over n_2}}} \\={0.12-0.075\over \sqrt{{0.12\cdot 0.88\over 100}+{0.075\cdot 0.925\over 80}}}=1.03 \approx1 \not \gt 1.645,故選\bbox[red, 2pt]{(B)}$$
解題: $$\begin{array}{} X & Y &X^2 & Y^2 & XY\\\hline 20 & 100& 400& 10000& 2000\\ 25& 110 & 625& 12100& 2750\\ 36& 113& 1296& 12769& 4068\\ 42& 120& 1764& 14400& 5040\\ 58& 125& 3364& 15625& 7250\\\hdashline 181& 568& 7449& 64894& 21108\end{array} \\ \Rightarrow 相關係數\gamma={n\sum x_iy_i-\sum x_i\sum y_i\over \sqrt{n\sum x_i^2-(\sum x_i)^2} \cdot \sqrt{n\sum y_i^2-(\sum y_i)^2}}\\ ={5\cdot 21108-181\cdot 568\over \sqrt{5\cdot 7449-181^2}\cdot \sqrt{5\cdot 64894-568^2}} ={2732\over \sqrt{4484}\cdot \sqrt{1846}} =0.9495,故選\bbox[red, 2pt]{(D)}$$
解題: $$迴歸直線斜率m={n\sum x_iy_i-\sum x_i\sum y_i\over {n\sum x_i^2-(\sum x_i)^2} }={2732\over 4484} =0.6093,故選\bbox[red, 2pt]{(B)}$$
解題: $$假設迴歸直線斜率: y=mx+b,該直線通過(\bar x,\bar y)=({181\over 5},{568\over 5})=(36.2,113.6) \\ \Rightarrow 113.6=0.609\cdot 36.2+b \Rightarrow 截距b=91.5542,故選\bbox[red, 2pt]{(C)}$$
沒有留言:
張貼留言