Loading [MathJax]/jax/output/CommonHTML/jax.js

2023年11月20日 星期一

112年台北科大碩士班-微分方程詳解

 國立臺北科技大學 l12學年度碩士班招生考試

系所組別 :1201製造科技研究所
第一節 微分方程 試題 (選考)

解答λ2+0.4λ+9.04=0λ=0.2±3iy=e0.2x(Acos(3x)+Bsin(3x))y=0.2e0.2x(Acos(3x)+Bsin(3x))+e0.2x(3Asin(3x)+3Bcos(3x)){y(0)=0y(0)=3{A=0B=1y=e0.2xsin(3x)
解答(1)x2y+3xyx+1=0y+3xy=1x1x2I(x)=e(3/x)dx=x3x3y+3x2y=x2x(x3y)=x2xx3y=13x312x2+Cy=1312x+Cx3y(2)=00=1314+C8C=23y=1312x23x3(2)y+4y=0λ2+4=0λ=±2iyh=Acos(2x)+Bsin(2x)yp=Ccos(3x)+Dsin(3x)yp=3Csin(3x)+3Dcos(3x)yp=9Ccos(3x)9Dsin(3x)yp+4yp=5Ccos(3x)5Dsin(3x)=2cos(3x)+3sin(3x){C=2/5D=3/5yp=25cos(3x)35sin(3x)y=yh+ypy=Acos(2x)+Bsin(2x)25cos(3x)35sin(3x)y=2Asin(2x)+2Bcos(2x)+65sin(3x)95cos(3x){y(0)=3y(0)=2{A25=32B95=2{A=17/5B=19/10y=175cos(2x)+1910sin(2x)25cos(3x)35sin(3x)
解答u=y,4x2u+12xu+3u=0u=xmu=mxm1u=m(m1)xm24m(m1)xm+12mxm+3xm=0(4m2+8m+3)xm=04m2+8m+3=0(2m+3)(2m+1)0m=1/2,3/2u=y=c1x1/2+c2x3/2y=2c1x1/22c2x1/2+c3y=12c1x3/232c2x5/2,{y(1)=0y(1)=1.5y(1)=1.75{2c12c2+c3=0c1+c2=1.512c132c2=1.75{c1=0.5c2=1c3=1y=x1/22x1/2+1
解答(1)xy+yex=0y+yx=exxI(x)=e(1/x)dx=xxy+y=ex(xy)=exxy=ex+c1y=exx+c1xy(1)=ee+c1=ec1=0y=exx(2)x2y+2xyx+1=0y+2xy=1x1x2I(x)=e(2/x)dx=x2x2y+2xy=x1(x2y)=x1x2y=12x2x+c1y=121x+c1x2y(1)=0121+c1=0c1=12y=121x+12x2
解答(1)y1,y2y1=11x(x,x1,3x1,1/(1x)){y=1/(1x)2y=2/(1x)3x(x1)2(1x)3+(3x1)1(1x)2+11x=2x+3x1+1x(1x)2=0y1=11x,y2=uy1=u1x{y2=u/(1x)+u/(1x)2y2=u(1x)+2u/(1x)2+2u/(1x)3x(x1)y+(3x1)y+y=x(x1)(u1x+2u(1x)2+2u(1x)3)+(3x1)(u1x+u(1x)2)+u1x=xu+u=0u=lnx+cy2=lnx+c1xy=c1y1+c2y2y=k11x+k2lnx1x,k1,k2 (2)y4xy+4x2y=xex2y2xy=2xy4x2y+xex2I(x)=e2xdx=ex2ex2y2xex2y=2xex2y4x2ex2y+x(ex2y)=2x(ex2y2xex2y)+x=2x(ex2y)+x(ex2y)2x(ex2y)=x(1)(ex2y)=(2xex2y+ex2y)=(2xex2y)+(ex2y)=2ex2y2x(ex2y)+(ex2y)(ex2y)=2(ex2y)2x(ex2y)+(ex2y)(2)(1)(2)(ex2y)=2(ex2y)+xu+2u=xu=ex2y=Acos2x+Bsin2x+12xy=ex2(Acos2x+Bsin2x+12x)

==================== END ==================

解題僅供參考

沒有留言:

張貼留言