國立臺北科技大學 l12學年度碩士班招生考試
系所組別 :1201製造科技研究所
第一節 微分方程 試題 (選考)
解答:λ2+0.4λ+9.04=0⇒λ=−0.2±3i⇒y=e−0.2x(Acos(3x)+Bsin(3x))⇒y′=−0.2e−0.2x(Acos(3x)+Bsin(3x))+e−0.2x(−3Asin(3x)+3Bcos(3x))初始值{y(0)=0y′(0)=3⇒{A=0B=1⇒y=e−0.2xsin(3x)解答:(1)x2y′+3xy−x+1=0⇒y′+3xy=1x−1x2積分因子I(x)=e∫(3/x)dx=x3⇒x3y′+3x2y=x2−x⇒(x3y)′=x2−x⇒x3y=13x3−12x2+C⇒y=13−12x+Cx3初始值y(2)=0⇒0=13−14+C8⇒C=−23⇒y=13−12x−23x3(2)先求齊次解,y″+4y=0⇒λ2+4=0⇒λ=±2i⇒yh=Acos(2x)+Bsin(2x)再令特解yp=Ccos(3x)+Dsin(3x)⇒y′p=−3Csin(3x)+3Dcos(3x)⇒y″p=−9Ccos(3x)−9Dsin(3x)⇒y″p+4yp=−5Ccos(3x)−5Dsin(3x)=2cos(3x)+3sin(3x)⇒{C=−2/5D=−3/5⇒yp=−25cos(3x)−35sin(3x)⇒y=yh+yp⇒y=Acos(2x)+Bsin(2x)−25cos(3x)−35sin(3x)⇒y′=−2Asin(2x)+2Bcos(2x)+65sin(3x)−95cos(3x)又{y(0)=3y′(0)=2⇒{A−25=32B−95=2⇒{A=17/5B=19/10⇒y=175cos(2x)+1910sin(2x)−25cos(3x)−35sin(3x)
解答:令u=y′,則原式4x2u″+12xu′+3u=0再令u=xm⇒u′=mxm−1⇒u″=m(m−1)xm−2⇒4m(m−1)xm+12mxm+3xm=0⇒(4m2+8m+3)xm=0⇒4m2+8m+3=0⇒(2m+3)(2m+1)=0⇒m=−1/2,−3/2⇒u=y′=c1x−1/2+c2x−3/2⇒y=2c1x1/2−2c2x−1/2+c3⇒y″=−12c1x−3/2−32c2x−5/2,因此{y(1)=0y′(1)=1.5y″(1)=−1.75⇒{2c1−2c2+c3=0c1+c2=1.5−12c1−32c2=−1.75⇒{c1=0.5c2=1c3=1⇒y=x1/2−2x−1/2+1
解答:(1)xy′+y−ex=0⇒y′+yx=exx⇒積分因子I(x)=e∫(1/x)dx=x⇒xy′+y=ex⇒(xy)′=ex⇒xy=ex+c1⇒y=exx+c1xy(1)=e⇒e+c1=e⇒c1=0⇒y=exx(2)x2y′+2xy−x+1=0⇒y′+2xy=1x−1x2⇒積分因子I(x)=e∫(2/x)dx=x2⇒x2y′+2xy=x−1⇒(x2y)′=x−1⇒x2y=12x2−x+c1⇒y=12−1x+c1x2又y(1)=0⇒12−1+c1=0⇒c1=12⇒y=12−1x+12x2
解答:(1)先求y1,再利用降階的方式求y2假設y1=11−x(註:題目有x,x−1,3x−1,因此考慮1/(1−x))⇒{y′=1/(1−x)2y″=2/(1−x)3⇒x(x−1)⋅2(1−x)3+(3x−1)⋅1(1−x)2+11−x=−2x+3x−1+1−x(1−x)2=0⇒確定y1=11−x,因此令y2=uy1=u1−x⇒{y′2=u/(1−x)+u/(1−x)2y″2=u″(1−x)+2u′/(1−x)2+2u/(1−x)3⇒x(x−1)y″+(3x−1)y′+y=x(x−1)(u″1−x+2u′(1−x)2+2u(1−x)3)+(3x−1)(u1−x+u(1−x)2)+u1−x=xu″+u′=0⇒u=lnx+c⇒y2=lnx+c1−x⇒y=c1y1+c2y2⇒y=k11−x+k2lnx1−x,k1,k2為常數 (2)y″−4xy′+4x2y=xex2⇒y″−2xy′=2xy′−4x2y+xex2積分因子I(x)=e∫−2xdx=e−x2⇒e−x2y″−2xe−x2y′=2xe−x2y′−4x2e−x2y+x⇒(e−x2y′)′=2x(e−x2y′−2xe−x2y)+x=2x(e−x2y)′+x⇒(e−x2y′)′−2x(e−x2y)′=x⋯(1)考慮(e−x2y)″=(−2xe−x2y+e−x2y′)′=(−2xe−x2y)′+(e−x2y′)′=−2e−x2y−2x(e−x2y)′+(e−x2y′)′⇒(e−x2y)″=−2(e−x2y)−2x(e−x2y)′+(e−x2y′)′⋯(2)將(1)代入(2)⇒(e−x2y)″=−2(e−x2y)+x⇒u″+2u=x⇒u=e−x2y=Acos√2x+Bsin√2x+12x⇒y=ex2(Acos√2x+Bsin√2x+12x)
==================== END ==================
解題僅供參考
沒有留言:
張貼留言