112年公務人員高等考試三級考試試題
類 科:電力工程、電子工程、電信工程
科 目:工程數學
甲、申論題部分:(50分)
解答:逆時針單位圓c可用z=cosθ+isinθ=eiθ來表示⇒dz=ieiθdθ⇒∮cˉzdz=∫2π0e−iθ⋅ieiθdθ=∫2π0idθ=2πi
解答:{E1:2x−y+2z=1E2:x−y=2⇒{→n1=(2,−1,2)→n2=(1,−1,0)⇒cosθ=→n1⋅→n2‖→n1‖⋅‖→n2‖=2+1+0√9⋅√2=1√2⇒θ=45∘
解答:A=[200102003]⇒det
乙、測驗題部分:(50分)
解答:先求齊次解,y''-y'-12y=0 \Rightarrow \lambda^2-\lambda-12=0 \Rightarrow (\lambda-4)(\lambda+3)=0 \\ \Rightarrow \lambda=4,-3 \Rightarrow y_h=c_1e^{4x}+c_2 e^{-3x}\\又\sinh x={1\over 2}(e^x-e^{-x}) \Rightarrow \sinh^2 x={1\over 4}(e^{2x}-2+e^{-2x}) \Rightarrow 2\sinh^2 x= {1\over 2}(e^{2x}+e^{-2x})-1\\ 取y_p=Ae^{2x}+Be^{-2x}+C \Rightarrow y_p'=2Ae^{2x}-2Be^{-2x} \Rightarrow y_p''=4Ae^{2x} +4Be^{-2x} \\ \Rightarrow y_p''-y_p'-12y=-10Ae^{2x}-6Be^{-2x}-12C= {1\over 2}(e^{2x}+e^{-2x})-1 \\ \Rightarrow \cases{-10A=1/2\\ -6B=1/2\\ -12C=-1} \Rightarrow \cases{A=-1/20\\ B=-1/12\\ C=1/12} \Rightarrow y_p=-{1\over 20}e^{2x}-{1\over 12}e^{-2x}+{1\over 12}\\ \Rightarrow y=y_h+y_p =c_1e^{4x}+c_2 e^{-3x}-{1\over 20}e^{2x}-{1\over 12}e^{-2x}+{1\over 12}\\ ,故選\bbox[red, 2pt]{(B)}解答:假設y=-{1\over 6}\cos(2x)\ln|\sec(2x)+\tan(2x)| \Rightarrow y'' ={1\over 3}\left( 2\cos(2x)\ln|\sec(2x)+\tan(2x)|+2\tan(2x)\right) \\ \Rightarrow 3y''+12y=2\tan(2x),故選\bbox[red, 2pt]{(D)}
解答:L\{\sin (\omega t)\} ={\omega \over s^2+\omega^2} \Rightarrow L\{e^{-2t}\sin (\omega t)\} ={\omega \over (s+2)^2+\omega^2} \\ \Rightarrow L\{te^{-2t}\sin (\omega t)\} =-\frac{d }{ds} {\omega \over (s+2)^2+\omega^2} = {2(s+2)\omega \over ((s+2)^2+\omega^2)^2} ,故選\bbox[red, 2pt]{(A)}
解答:\left[\begin{array}{rrr|rrr}1& 0 & 1& 1& 0 & 0\\ -1& 1& 1& 0 & 1& 0\\ 2& -1& 1& 0 & 0 & 1\end{array} \right] \xrightarrow{R_1+R_2\to R_2,-2R_1+R_3\to R_3} \left[\begin{array}{rrr|rrr}1& 0 & 1& 1& 0 & 0\\ 0& 1& 2& 1 & 1& 0\\ 0& -1& -1& -2 & 0 & 1\end{array} \right] \\ \xrightarrow{R_2+R_3\to R_3}\left[\begin{array}{rrr|rrr}1& 0 & 1& 1& 0 & 0\\ 0& 1& 2& 1 & 1& 0\\ 0& 0& 1& -1 & 1 & 1\end{array} \right] \xrightarrow{-R_3+R_1\to R_1,-2R_3+R_2\to R_2}\left[\begin{array}{rrr|rrr}1& 0 & 0& 2& -1 & -1\\ 0& 1& 0& 3 & -1& -2\\ 0& 0& 1& -1 & 1 & 1\end{array} \right] \\ \Rightarrow A^{-1} =\begin{bmatrix} 2& -1& -1\\ 3& -1& -2\\ -1& 1& 1\end{bmatrix},故選\bbox[red, 2pt]{(B)}
解答:a_0={1\over 2} \int_0^1 x\,dx ={1\over 4}\\ a_n= \int_0^1 x\cos(n\pi x)\,dx ={1\over n^2 \pi^2}((-1)^n-1) \Rightarrow \cases{a_1=-2/\pi^2\\ a_2=0\\ a_3=-2/9\pi^2},故選\bbox[red, 2pt]{(C)}
解答:無限多解 \Rightarrow \begin{vmatrix}4 &1 &T^2-11 \\4 &1 &-2 \\4 & 6 &7\end{vmatrix} =20(T^2-11)+40=0 \Rightarrow T^2=9 \Rightarrow T=\pm 3\\ 又無限多解 \Rightarrow rank(C)\lt 3 \Rightarrow rank(C)最大值為2,故選\bbox[red, 2pt]{(D)}
解答:\cases{\vec H=(2,8t,t^2)\\ \vec G=(-3t,2e^t,\ln t)} \Rightarrow \vec H\times \vec G =(8t\ln t-2t^2e^t, -3t^3-2\ln t,4e^t+24t^2) \\ \Rightarrow \frac{d }{dt}[\vec H\times \vec G ] =(8\ln t+8-4te^t-2t^2e^t, -9t^2-{1\over t},4e^t+48t),故選\bbox[red, 2pt]{(A)}
解答:\vec F=(x(t),y(t),z(t)) \Rightarrow \vec F'=(x'(t),y'(t),z'(t)) =(e^t\cos t-e^t\sin t,e^t\sin t+e^t\cos t,e^t)\\ \Rightarrow 單位切線向量={\vec F'\over \Vert \vec F'\Vert} =(x'(t),y'(t),z'(t)) ={1\over \sqrt 3e^t}(e^t\cos t-e^t\sin t,e^t\sin t+e^t\cos t,e^t) \\={1\over \sqrt 3}(\cos t-\sin t,\cos t+\sin t,1)={1\over \sqrt 3}(\cos t-\sin t)\hat i +{1\over \sqrt 3}(\cos t+\sin t)\hat j +{1\over \sqrt 3}\hat k,故選\bbox[red, 2pt]{(B)}
解答:(A)\bigcirc: \nabla \varphi =(\frac{\partial }{\partial x}\varphi,\frac{\partial }{\partial y}\varphi,\frac{\partial }{\partial z}\varphi) =(y^3z^2,3xy^2z^2,2xy^3z) \\ (B)\bigcirc: \nabla \varphi(-1,-1,2)=(-4,-12,4) \\ (C)\bigcirc: {(-4,-12,4)\over \Vert (-4,-12,4)\Vert}= \pm {(-4,-12,4)\over 4\sqrt{11}}= \pm{1\over \sqrt{11}}(-1,-3,1)\\(D)\times: 應該是k(-1,-3,1) \ne (8,24,-24)\\,故選\bbox[red, 2pt]{(D)}
解答:計算的結果有差,再想想,故選\bbox[red, 2pt]{(B)}
解答:顯然f(z)=|z|在z=0不可微,故選\bbox[red, 2pt]{(A)}
解答:\det(AB)=\det(A)\det(B)=24\times 24=576,故選\bbox[red, 2pt]{(B)}
解答:(1+i)^2=2i \Rightarrow (1+i)^{12} =(2i)^6=-2^6=-64,故選\bbox[red, 2pt]{(A)}
解答:f(t)=L^{-1}\left\{{s-1\over (s+3)(s^2+2s+2)}\right\} =L^{-1}\left\{{4s+1\over 5(s^2+2s+2)}-{4\over 5(s+3)}\right\} \\=L^{-1}\left\{{4\over 5}\cdot {s+1\over (s+1)^2+1}-{3\over 5}{1\over (s+1)^2+1}-{4\over 5(s+3)}\right\} \\={4\over 5}e^{-t}\cos(t)-{3\over 5}e^{-t}\sin (t)-{4\over 5}e^{-3t},故選\bbox[red, 2pt]{(A)}
解答:\det(A)=-30 \Rightarrow \det(B)=\det(A^{-1})=-{1\over 30 } \\\Rightarrow \det(B^2)=\det(B)\times \det(B)=1/(-30)^2=1/900,故選\bbox[red, 2pt]{(A)}
解答:特徵向量v需滿足Av=\lambda v,其中\lambda 為特徵值\\ \begin{bmatrix} 5&4 \\1& 2\end{bmatrix} \begin{bmatrix} 4\\ 1\end{bmatrix} =\begin{bmatrix} 24\\ 6\end{bmatrix} =6\begin{bmatrix} 4\\ 1\end{bmatrix} \Rightarrow 特徵值\lambda_1=6\\ \begin{bmatrix} 5&4 \\1& 2\end{bmatrix} \begin{bmatrix} 1\\ -1\end{bmatrix} =\begin{bmatrix} 1\\ -1\end{bmatrix} =1\begin{bmatrix} 1\\ -1\end{bmatrix} \Rightarrow 特徵值\lambda_2=1\\ \Rightarrow 對角化矩陣=\begin{bmatrix} \lambda_1 &0 \\0& \lambda_2\end{bmatrix} =\begin{bmatrix} 6&0 \\0& 1\end{bmatrix},故選\bbox[red, 2pt]{(A)}
解答:e^x y'=2(x+1)y^2 \Rightarrow {1\over y^2}dy={2(x+1)\over e^x}\,dx \Rightarrow -{1\over y}=-{2x\over e^x}-{4\over e^x}+c_1 =-{2x+4+c_2e^x\over e^x}\\ \Rightarrow y={e^x\over 2x+4+c_2e^x} \Rightarrow y(0)={1\over 4+c_2}={1\over 6} \Rightarrow c_2=2 \Rightarrow y={e^x\over 2x+4+ 2e^x} \\ \Rightarrow y={1\over (2x+4)e^{-x}+2},故選\bbox[red, 2pt]{(A)}
解答:L^{-1}\left\{{s-1\over s^2(s+1)} \right\} =L^{-1}\left\{{2\over s } -{1\over s^2}-{2\over s+1}\right\} =2-t-2e^{-t},故選\bbox[red, 2pt]{(B)}
解答:L\left\{\cosh(at)\cos(at) \right\} =L\left\{{e^{at}+e^{-at}\over 2}\cdot \cos(at) \right\} = {1\over 2}L\left\{e^{at} \cos(at) \right\}+ {1\over 2}L\left\{e^{-at} \cos(at) \right\} \\={1\over 2}{s-a\over (s-a)^2+a^2} +{1\over 2}{s+a\over (s+a)^2+a^2} ={1\over 2}\cdot {(s-a)((s+a)^2+a^2)+ (s+a)((s-a)^2+a^2) \over (s-a)^2+a^2)((s+a)^2+a^2)}\\={s^3\over s^4+4a^4},故選\bbox[red, 2pt]{(D)}
解答:f(t)={\sin(8t)\over t}為偶函數 \Rightarrow \int_{-\infty}^\infty f(t)e^{-j5t}\,dt=\int_{-\infty}^\infty f(t)(\cos(5t)-i\sin(5t))\,dt=\int_{-\infty}^\infty f(t)\cos(5t)\,dt\\=\int_{-\infty}^\infty {\sin(8t)\over t}\cos(5t)\,dt ={1\over 2}\int_{-\infty}^\infty {1\over t}(\sin(13t)+\sin(3t))\,dt =\int_0^\infty ({\sin(13t)\over t}+{\sin(3t)\over t})dt \\={\pi \over 2}+{\pi \over 2}=\pi,故選\bbox[red, 2pt]{(D)}
沒有留言:
張貼留言