Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2023年11月18日 星期六

112年台北科大機電整合碩士班-工程數學詳解

 國立臺北科技大學 112學年度碩士班招生考試

系所組別 :1111、 l112機械工程系機電整合碩士班甲組
第一節 工程數學 試題


解答,y3y+2y=0λ23λ+2=0(λ2)(λ1)=0λ=2,1yh=c1ex+c2e2x,{y1=exy2=e2xr(x)=e3xex+1{y1=exy2=2e2xW=|y1y2y1y2|=|exe2xex2e2x|=e3xyp=y1y2r(x)Wdx+y2y1r(x)Wdx=exe2xex+1dx+e2xexex+1dx=ex(exln(ex+1))e2xln(ex+1)=e2xex(1+ex)ln(ex+1)y=yh+ypy=c1ex+c2e2xex(1+ex)ln(ex+1)
解答L{y}+2L{y}+10L{y}=L{t}s2Y(s)sy(0)y(0)+2(sY(s)y(0))+10Y(s)=1s2(s2+2s+10)Y(s)s3=1s2Y(s)=s+3s2+2s+10+1s2(s2+2s+10)=s+1(s+1)2+32+2(s+1)2+32+150s+1(s+1)2+322251(s+1)2+32150s+110s2=5150s+1(s+1)2+32+48251(s+1)2+32150s+110s2y(t)=L1{Y(s)}y(t)=5150etcos(3t)+1625etsin(3t)150+t10

解答{x1+x2+x3=63x1x2+x3=42x1+x22x3=6Ax=b,A=[111311212],x=[x1x2x3],b=[646]A1=[16121323013161223]x=A1b=[16121323013161223][646]=[123]{x1=1x2=2x3=3


解答y(x)=n=0anxny(x)=n=1nanxn1y(x)=n=2n(n1)anxn2ex=n=01n!xnyxy+exy=4n=2n(n1)anxn2n=1nanxn+(n=01n!xn)(n=0anxn)=4xnbn=(n+2)(n+1)an+2nan+(an+an1+12an2+13!an3++1n!a0)=(n+2)(n+1)an+2nan+nk=01k!ank{b0=4bn=0,n>0{y(0)=2y(0)=3{a0=2a1=3b0=2a2+a0=4a2=1n>0bn=(n+2)(n+1)an+2nan+nk=01k!ank=0an+2=1(n+2)(n+1)(nannk=01k!ank){a3=16(a1a1a0)=13a4=112(2a2a2a112a0)=14y(x)=2+3x+x213x314x4+


解答
A.A=[121011021]det B. A=\left[\begin{matrix}1 & -2 & 1 \\0 & 1 & -1 \\0 & 2 & -1\end{matrix}\right] =PDP^{-1} =\left[\begin{matrix}1 & \frac{-1+i}{2} & \frac{-1-i}{2} \\0 & \frac{1+i}{2} & \frac{1-i}{2} \\0 & 1 & 1\end{matrix}\right]\left[\begin{matrix}1 & 0 & 0 \\0 & i & 0 \\0 & 0 & -i \end{matrix}\right]\left[\begin{matrix}1 & -1 & 1 \\0 & -i & \frac{1+i}{2} \\0 & i & \frac{1-i}{2}\end{matrix}\right] \\ \Rightarrow A^{2000}=PD^{2000}P^{-1} =\left[ \begin{matrix}1 & \frac{-1+i}{2} & \frac{-1-i}{2} \\0 & \frac{1+i}{2} & \frac{1-i}{2} \\0 & 1 & 1\end{matrix}\right]\left[\begin{matrix}1^{2000} & 0 & 0 \\0 & i^{2000} & 0 \\0 & 0 & (-i)^{2000} \end{matrix}\right] \left[\begin{matrix}1 & -1 & 1 \\0 & -i  & \frac{1+i}{2} \\0 & i & \frac{1-i}{2}\end{matrix}\right]\\=\left[\begin{matrix}1 & \frac{-1+i}{2} & \frac{-1-i}{2} \\0 & \frac{1+i}{2} & \frac{1-i}{2} \\0 & 1 & 1\end{matrix} \right]\left[ \begin{matrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{matrix}\right]\left[\begin{matrix}1 & -1 & 1 \\0 & -i & \frac{1+i}{2} \\0 & i & \frac{1-i}{2}\end{matrix}\right] =PIP^{-1}= PP^{-1} \\=I =\bbox[red, 2pt]{\left[ \begin{matrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{matrix}\right]}
======================= END =======================
解題僅供參考

沒有留言:

張貼留言