Processing math: 92%

2023年11月24日 星期五

111年地方特考-工程數學詳解

 111 年特種考試地方政府公務人員考試試題

等 別:三等考試
類 科:電力工程、電子工程
科 目:工程數學

甲、申論題部分:(50分)

解答:()f(x,y)=(x2+2y)e(x2+y2)f=(fx,fy)=((2x2x34xy)e(x2+y2),(22x2y4y2)e(x2+y2)f(P0)=f(1,1)=(4e2,0)()u=(1,0)fu=(4e2,0)(1,0)=4e2

解答:()I(x)=e3xdx=x3()I(x)y+I(x)3xy=I(x)xx3y+3x2y=x4(x3y)=x4x3y=x4dxx3y=15x5+c1y=15x2+c1x3,y(1)=315+c1=3c1=145y=15x2+145x3


解答:()λ1=1(Aλ1I)x=0[102111102][x1x2x3]=0{x1+2x3=0x2x3=0:{x3(211)}λ2=2(Aλ2I)x=0[202101101][x1x2x3]=0x1+x3=0:{x2(010)+x3(101)}a(211),b(010),c(101),a,b,cR()vA,Av=λvA2v=λAv=λ2vA8v=λ8vvA8AA8a(211),b(010),c(101),a,b,cR


解答:()1=12π=π,,fX(x)=kxπ滿fdx=110kxπdx=1k2π=1k=2πfX(X)=2πXπ=2X ()FY(y)=P(Y<y)=P(X2<y)=P(X<y)=y02xdx=yFY(y)=yfY(y)=ddyFY(y)=1fY(y)=1

解答:()f(z)=1z2+4=1(z+2i)(z2i)f(z) has simple poles at z=±2iz=±2iC1{Res(f,2i)=1z+2i|z=2i=14iRes(f,2i)=1z2i|z=2i=14iC1f(z)dz=2πi(Res(f,2i)+Res(f,2i))=2πi×0=0(){z=2iC2z=2iC2C1f(z)dz=2πi×Res(f,2i)=π2

乙、測驗題部分:(50分)

解答:|ijk113204|=4i+10j+2k=(4,10,2)=(a,b,c)a×b×c=80,(B)
解答:[111111][x1x2]=[11]x1+x2=1,(C)
解答:cosϕ=(1,3,2)(0,1,4)(1,3,2)(0,1,4)=51617516sinϕ=1(516)2=2311615<231<16⇒⇒1516<23116<10.94<23116<1,(A)
解答:,a(1,2,3)+b(1,0,1)=(3,1,α){a+b=32a=13ab=α{a=1/2b=5/2α=3252=1,(C)
解答:det(A)=70A,(A)
解答:[231121132][101]=[101]Av=vv,(D)
解答:A=(4531015710)=(13211)(12001)(25352525)A=(13211)(12001)(25352525)=(13211)(0001)(25352525)=(35352525)A(1000)=(6040),(C)
解答:f(z)=ˉzlimz0f(z)f(0)z0=limz0ˉzz=lim(x,y)(0,0)xiyx+iy={1,x0,y=01,x=0,y0ˉzz=0,(D)
解答:=1z=52i=a+bia+b=3,(C)
解答:Γr(t)=(t,t2),0t1,z=t+it2dz=dt+2itdt=(1+2it)dtΓz2dz=10(t+it2)2(1+2it)dt=10((t25t4)+(4t32t5)i)dt=131+(113)i=23+23iab=23×23=49=0.44,(B)
解答:g(z)=Cs2s+2(sz)2dsg(1)=Cs2s+2(s1)2dsf(s)=s2s+2f(s)=2s1f(1)=1Cs2s+2(s1)2ds=2πif(1)=2πi,(A)
解答:f=x2sin(xy)f=(fx,fy)=(2xsin(xy)+x2ycos(xy),x3cos(xy))f(1,π)=(2sinπ+πcos(π),cos(π))=(π,1),(C)
解答:y+y+y=0et/2(c1cos(3t/2)+c2sin(3t/2))y+y+y=sin(ωt),ω,(D)
解答:y=n=0anxny=n=1nanxn1y=n=2n(n1)anxn2y(0)=2a2x=0y(x)+xy(x)+exy(x)=x2+1y(0)+0+2=12a2+2=1a2=12,(B)
解答:LL1,(A)(B) {u=f(t)dv=estdt{du=f(t)dtv=1sestsL{f}=s0f(t)estdt=s(1sf(t)est|0+1s0f(t)estdt)=f(0)+L{f(t)}=L{f(t)}sL{f}=L{f},(D),(C)
解答:g(x)={1,|x|<10,G(ω)=2sin(ω)ωf(t)=g(t1)F(ω)=G(ω)ejω=2sin(ω)ωejω,(A)
解答:f(x)={1|x|,|x|10,|x|>1={1+x,1x01x,0x10,E(X)=0(y)E(X2)=01x2(1+x)dx+10x2(1x)dx=16Var(X)=E(X2)(E(X))2=16,(C)
解答:f(x,y)dxdy=11010Axy2dxdy=1012Ay2dy=16A=1A=6fX(x)=106xy2dy=2xE(X)=10xfX(x)dx=102x2dx=23,(B)
解答: \cases{P(n=5)=0.4^5\\ P(n=4)=C^{5}_4\cdot 0.4^4\cdot 0.6\\ P(n=3)= C^5_3 \cdot 0.4^3\cdot 0.6^2} \Rightarrow P(n=5)+ P(n=4)+P(n=3) \\=0.4^3(0.4^2+3\cdot 0.4+10\cdot 0.6^2) =0.064\cdot 4.96 =0.31744,故選\bbox[red, 2pt]{(C)}
解答: e^{i\theta} =\cos \theta+i \sin \theta \Rightarrow e^{\pi i/2} =i \Rightarrow \ln i={\pi \over 2}i\\因此 i^{2i} =e^{2i\ln i} = e^{2i \cdot  \pi i/2} =e^{-\pi},故選\bbox[red, 2pt]{(D)}

================= END ====================

解題僅供參考,其他試題及詳解


沒有留言:

張貼留言